摘要:
Network node (110), and method (300) in a network node (110), for load control in a cell (130) in a wireless communication system (100). The method (300) comprises starting an interference cancellation process, for reducing interference between uplink signals, estimating an interference cancellation gain, relative to an interference reduced received uplink signal power resulting from the interference cancellation process, wherein the interference cancellation gain is estimated after the start of the interference cancellation process but before the interference cancellation process is completed. In addition, the method (300) comprises controlling the traffic load of the cell (130), by considering the estimated interference cancellation gain.
摘要:
Network node (110), and method (300) in a network node (110), for load control in a cell (130) in a wireless communication system (100). The method (300) comprises starting an interference cancellation process, for reducing interference between uplink signals, estimating an interference cancellation gain, relative to an interference reduced received uplink signal power resulting from the interference cancellation process, wherein the interference cancellation gain is estimated after the start of the interference cancellation process but before the interference cancellation process is completed. In addition, the method (300) comprises controlling the traffic load of the cell (130), by considering the estimated interference cancellation gain.
摘要:
The present disclosure relates to a cell selection scheme. In one embodiment, there provides a method for performing a cell selection for a UE at a primary serving cell of the UE in a CoMP cluster including the primary serving cell and one or more candidate cells, the method comprising the steps of: receiving PRACH measurements for the UE from the candidate cells; and selecting from the candidate cells one or more cells for the UE as its secondary serving cells based on the received PRACH measurements.
摘要:
In a receive node of a wireless network, an iterative multi-user multi-stage interference cancellation receiver is used. After each stage of interference cancellation, interference characteristics change. An adaptive finger placement strategy is used in which after each stage of interference cancellation, finger delays and combining weights of the receiver are adapted to reflect the changed interference characteristics.
摘要:
The present disclosure relates to a cell selection scheme. In one embodiment, there provides a method for performing a cell selection for a UE at a primary serving cell of the UE in a CoMP cluster including the primary serving cell and one or more candidate cells, the method comprising the steps of: receiving PRACH measurements for the UE from the candidate cells; and selecting from the candidate cells one or more cells for the UE as its secondary serving cells based on the received PRACH measurements.
摘要:
In a receive node of a wireless network, an iterative multi-user multi-stage interference cancellation receiver is used. After each stage of interference cancellation, interference characteristics change. An adaptive strategy is used in which after each stage of interference cancellation, impairment covariance is parametrically updated and combining weights of the receiver are adapted to reflect the updated impairment covariance.
摘要:
In a receive node of a wireless network, an iterative multi-user multi-stage interference cancellation receiver is used. After each stage of interference cancellation, interference characteristics change. An adaptive finger placement strategy is used in which after each stage of interference cancellation, finger delays and combining weights of the receiver are adapted to reflect the changed interference characteristics.
摘要:
In a receive node of a wireless network, an iterative multi-user multi-stage interference cancellation receiver is used. The receiver performs code-averaged equalization and chip chip-level code-specific interference over-cancellation on the received signals. This can result in a unified interference cancellation processing, and can avoid cumbersome calculations of code cross correlations that is required in symbol-level interference cancellation. A symbol-level code-averaged desired signal add-back is performed to address the over-cancellation of some desired signals.
摘要:
In a receive node of a wireless network, an iterative multi-user multi-stage interference cancellation receiver is used. The receiver performs code-averaged equalization and chip chip-level code-specific interference over-cancellation on the received signals. This can result in a unified interference cancellation processing, and can avoid cumbersome calculations of code cross correlations that is required in symbol-level interference cancellation. A symbol-level code-averaged desired signal add-back is performed to address the over-cancellation of some desired signals.
摘要:
In a receive node of a wireless network, an iterative multi-user multi-stage interference cancellation receiver is used. After each stage of interference cancellation, interference characteristics change. An adaptive strategy is used in which after each stage of interference cancellation, impairment covariance is parametrically updated and combining weights of the receiver are adapted to reflect the updated impairment covariance.