摘要:
Embodiments of the present invention relate to techniques for improving optofluidic microscope (OFM) devices. One technique which may be used eliminates the aperture layer covering the light detector layer. Other techniques retain the aperture layer, reversing the relative position of the light source and light detector such that light passes through the aperture layer before passing through the fluid channel to the light detector. Another technique adds an optical tweezer for controlling the movement of objects moving through the fluid channel. Another technique adds an optical fiber bundle to relay light from light transmissive regions to a remote light detector. Another technique adds two electrodes at ends of the fluid channel to generate an electrical field capable of moving objects through the fluid channel while suppressing rotation. These techniques can be employed separately or in combination to improve the capabilities of OFM devices.
摘要:
Embodiments of the present invention relate to techniques for improving optofluidic microscope (OFM) devices. One technique which may be used eliminates the aperture layer covering the light detector layer. Other techniques retain the aperture layer, reversing the relative position of the light source and light detector such that light passes through the aperture layer before passing through the fluid channel to the light detector. Another technique adds an optical tweezer for controlling the movement of objects moving through the fluid channel. Another technique adds an optical fiber bundle to relay light from light transmissive regions to a remote light detector. Another technique adds two electrodes at ends of the fluid channel to generate an electrical field capable of moving objects through the fluid channel while suppressing rotation. These techniques can be employed separately or in combination to improve the capabilities of OFM devices.
摘要:
Embodiments of the present invention relate to techniques for improving optofluidic microscope (OFM) devices. One technique that may be used employs surface tension at a hydrophobic surface to passively pump the fluid sample through the fluid channel. Another technique uses electrodes to adjust the position of objects in the fluid channel. Another technique computationally adjusts the focal plane of an image wavefront measured using differential interference contrast (DIC) based on Young's interference by back propagating the image wavefront from the detection focal plane to a different focal plane. These techniques can be employed separately or in combination to improve the capabilities of OFM devices.
摘要:
Embodiments of the present invention relate to techniques for improving optofluidic microscope (OFM) devices. One technique that may be used employs surface tension at a hydrophobic surface to passively pump the fluid sample through the fluid channel. Another technique uses electrodes to adjust the position of objects in the fluid channel. Another technique computationally adjusts the focal plane of an image wavefront measured using differential interference contrast (DIC) based on Young's interference by back propagating the image wavefront from the detection focal plane to a different focal plane. These techniques can be employed separately or in combination to improve the capabilities of OFM devices.
摘要:
An embodiment of a method comprises providing a fluid sample having objects to an optofluidic microscope device comprising a fluid channel and a light detector, and receiving time varying light data from the fluid sample. The embodiment of the method also comprises determining one or more characteristics of the objects based on the time varying light data, and determining one or more phenotypes associated with the objects based on the determined characteristics.