摘要:
Conventional retroreflection mirrors in the form of right angle prisms are quite sensitive to beam position and beam angle errors. Manufacturing and assembly tolerances are also a cause of concern in conventional devices. Accordingly, the present invention solves these aforementioned problems by providing a retroreflection device comprising: a beam director, preferably in the form of a Wollaston prism; a polarization rotator, preferably in the form of a quarter wave plate; and a flat reflective surface, such as a plane mirror. The device of the present invention is far less sensitive to beam angle alignment and is completely independent of the beam position. The present invention is particularly useful as a beam splitter for directing orthogonally polarized beams of light back along parallel paths in an interleaver apparatus.
摘要:
An apparatus capable of operating as an interleaver, a deinterleaver, a filter, or some combination thereof is described. An optical device that can be configured to multiple different optical components. In one embodiment, the optical device can be configured to operate as a single double-pass interlayer/deinterleaver, as two single-pass interleaver/deinterleavers, or as one or more filters. In one embodiment, the optical device has ports on two or more planes and a birefringent element that occupies the two or more planes. Connections between the two or more planes can be made by walk-off crystals internal to the optical device or between ports by connections that are external to the optical device to configure the optical device.
摘要:
Interleaver/deinterleaver apparatuses for combining/separating optical channels are described. An interleaver/deinterleaver apparatus is described as folded when an optical signal is directed through a single crystal multiple times. Double-pass refers to the optical signal following a (folded) path through the apparatus twice. When operating as an deinterleaver, the interleaver/deinterleaver separates an optical signal (e.g., WDM signal) into subsets of optical signals (e.g., channels). In one embodiment, deinterleaving optical signals separates an optical signal into even and odd International Telecommunications Union (ITU) channels. When operating as an interleaver, the interleaver/deinterleaver mixes subsets of optical signals (e.g., channels) into a multiplexed (e.g., WDM) optical signal. The interleaver/deinterleaver apparatus can be used to increase the bandwidth of an optical network. For example, the interleaver/deinterleaver can be used to interface components designed for a first channel spacing (e.g., 100 GHz) to components designed for a second channel spacing (e.g., 200 GHz). In one embodiment, interleaveing combines even and odd ITU channels into a single optical signal.
摘要:
A method and device is disclosed for dispersion compensation of an optical signal having periodic dispersion within a multi-channels system. For example interleaved optical channels often exhibit dispersion having a characteristic that is repeated in adjacent channels. By providing a periodic device that allows for polarization dependent routing of an interleaved signal to allow for multiple passes of said signal through a multi-cavity GT etalon, having a free-spectral range that corresponds to the channel spacing, the dispersion in the interleaved signal can be lessened and practically obviated or balanced to a desired level. This invention provides a device and method to achieve that end.
摘要:
The present invention relates to bi-directional circulators based on interleaver technology, e.g. birefringent crystal interleaver technology, that enables signals containing even number ITU channels to travel in one direction through the device, while signals containing odd number ITU channels travel in the opposite direction. Open and closed three and four port devices are disclosed, as well as several useful implementations of the three port device in combination with other optical components, which result in hybrid uni-directional and bi-directional devices.
摘要:
Methods and apparatuses for tuning optical devices are described. Optical devices can be tuned by inserting tuning plates into the optical path(s) of the devices. Tuning plates can be, for example, quartz plates. By selecting the appropriate thickness and optical axis orientation, the tuning plate can be used to tune the optical devices to a precision that is unavailable through manufacturing specifications and tolerances of the components of the optical device alone. Because quartz has a relatively small birefringence, tuning plates made with quartz can be thicker, and therefore manufactured more precisely than the components of the optical devices.
摘要:
Wavelength interleaving cross-connects pass a first optical signal including a first set of optical frequencies in a first direction and a second optical signal including a second set of optical frequencies in a second direction. In one embodiment, the first optical signal, when input to a first input/output (I/O) port, is routed from the first I/O port to a third I/O port. The first optical signal, when input to a fourth I/O port, is routed from the fourth port to a second I/O port. The second optical signal, when input to the second I/O port, is routed from the second I/O port to the third I/O port. The second optical signal, when input to the fourth I/O port, is routed from the fourth I/O port to the first I/O port. Thus, by coupling an optical device (e.g., amplifier, filter) between the third port and the fourth port, the optical device can be used for bi-directional communications thereby reducing the number of devices required for a bi-directional optical network architecture.
摘要:
An optical circulator with a first, second, third, and fourth port. The second and third port are disposed to receive polarized light entering the circulator as unpolarized light from the first port. The fourth port is disposed to receive unpolarized light entering the circulator as polarized light from the second and third port. The circulator comprises a beam-splitting and -combining element for separating and combining mutually orthogonal polarizations and a non-reciprocal polarization rotator. The circulator can be used to furnish light of a desired predetermined polarization for polarization-dependent devices.
摘要:
Bi-directional wavelength interleaving optical isolators provide the ability to pass a first set of optical signals (e.g., ITU even channels) from a first port to a second port, while preventing a second set of optical signals from passing thereto. The bi-directional wavelength interleaving optical isolators also pass the second set of optical signals (e.g., ITU odd channels) from the second port to the first port, while preventing the first set of optical signals from passing thereto. Thus, the bi-directional wavelength interleaving optical isolator can provide bi-directional communications by passing a first set of signals in a first direction and a second set of signals in a second direction.
摘要:
Interleaver/deinterleaver apparatuses for combining/separating optical channels are described. When operating as a deinterleaver, the interleaver/deinterleaver separates an optical signal (e.g. WDM signal) into subsets of optical signals (e.g. channels). In one embodiment, deinterleaving optical signals separates an optical signal into even and odd International Telecommunications Union (ITU) channels. The interleaver/deinterleavers may include isolator components to route optical signals to and from input/output ports. A variety of reflective elements, e.g. quarter wave mirrors, reflective prisms, etalons, can be used for double passing the signals through a birefringent crystal assembly.