摘要:
An operation method of a non-volatile memory for reducing the second-bit effect in the non-volatile memory is suitable for an N-level memory cell having a first storage position and a second storage position (wherein N is a positive integer greater than 2). The method includes following steps: determining sets of operation levels for operating the first storage position according to the level of the second storage position; when the level of the second storage position is a lower level, operating the first storage position according to a first set of operation levels; when the level of the second storage position is a higher level, operating the first storage position according to a second set of operation levels. Each of the levels in the second set of operation levels is greater than the corresponding level in the first set of operation levels.
摘要:
An operation method of a non-volatile memory for reducing the second-bit effect in the non-volatile memory is suitable for an N-level memory cell having a first storage position and a second storage position (wherein N is a positive integer greater than 2). The method includes following steps: determining sets of operation levels for operating the first storage position according to the level of the second storage position; when the level of the second storage position is a lower level, operating the first storage position according to a first set of operation levels; when the level of the second storage position is a higher level, operating the first storage position according to a second set of operation levels. Each of the levels in the second set of operation levels is greater than the corresponding level in the first set of operation levels.
摘要:
A method for measuring intrinsic capacitance of a MOS device is provided. The MOS device includes a first terminal, a second terminal, a third terminal and a fourth terminal. First, provide a first input signal to the second terminal and ground the third terminal and fourth terminal. Then, charge the first terminal and measure a first current required for charging the first terminal. Afterward, provide a second input signal to the second terminal, ground the third terminal and the fourth terminal, and measure a second current required for charging the first terminal, wherein the first input signal and the second input signal have the same low level, but different high levels. Finally, determine intrinsic capacitance between the first terminal and the second terminal according to the first current, the second current and a high level difference between the first input signal and the second input signal.
摘要:
A method for measuring intrinsic capacitance of a MOS device is provided. The MOS device includes a first terminal, a second terminal, a third terminal and a fourth terminal. First, provide a first input signal to the second terminal and ground the third terminal and fourth terminal. Then, charge the first terminal and measure a first current required for charging the first terminal. Afterward, provide a second input signal to the second terminal, ground the third terminal and the fourth terminal, and measure a second current required for charging the first terminal, wherein the first input signal and the second input signal have the same low level, but different high levels. Finally, determine intrinsic capacitance between the first terminal and the second terminal according to the first current, the second current and a high level difference between the first input signal and the second input signal.
摘要:
A non-volatile memory and a manufacturing method thereof are provided. The non-volatile memory includes a substrate, a gate structure, a first doped region, a second doped region and a pair of isolation structures. The gate structure is disposed on the substrate. The gate structure includes a charge storage structure, a gate and spacers. The charge storage structure is disposed on the substrate. The gate is disposed on the charge storage structure. The spacers are disposed on the sidewalls of the gate and the charge storage structure. The first doped region and the second doped region are respectively disposed in the substrate at two sides of the charge storage structure and at least located under the spacers. The isolation structures are respectively disposed in the substrate at two sides of the gate structure.
摘要:
A flash memory and a manufacturing method and an operating method thereof are provided. The flash memory includes a substrate, a charge-trapping structure, a first gate, a second gate, a third gate, a first doped region and a second doped region. The substrate has a protrusion portion. The charge-trapping structure is disposed over the substrate. The first gate and the second gate are disposed respectively over the charge-trapping structure at two sides of the protrusion portion. The top surfaces of the first gate and the second gate are lower than the top surface of the charge-trapping structure located on the top of the protrusion portion. The third gate is disposed over the charge-trapping structure located on the top of the protrusion portion. The first doped region and the second doped region are disposed respectively in the substrate at two sides of the protrusion portion.
摘要:
The memory device is described, which includes a substrate, a conductive layer, a plurality of charge storage layers and a plurality of doped regions. The substrate has a plurality of trenches formed therein. The conductive layer is disposed on the substrate and fills the trenches. The charge storage layers are disposed between the substrate and the conductive layer in the trenches respectively, wherein the charge storage layers are separated from each other. The doped regions are configured in the substrate under bottoms of the trenches, respectively.
摘要:
A non-volatile memory and a manufacturing method thereof and a method for operating a memory cell are provided. The non-volatile memory includes a substrate, first and second doped regions, a charged-trapping structure, first and second gates and an inter-gate insulation layer. The first and second doped regions are disposed in the substrate and extend along a first direction. The first and second doped regions are arranged alternately. The charged-trapping structure is disposed on the substrate. The first and second gates are disposed on the charged-trapping structure. Each first gate is located above one of the first doped regions. The second gates extend along a second direction and are located above the second doped regions. The inter-gate insulation layer is disposed between the first gates and the second gates. Adjacent first and second doped regions and the first gate, the second gate and the charged-trapping structure therebetween define a memory cell.
摘要:
A non-volatile memory and a manufacturing method thereof are provided. The non-volatile memory includes a substrate, a gate structure, a first doped region, a second doped region and a pair of isolation structures. The gate structure is disposed on the substrate. The gate structure includes a charge storage structure, a gate and spacers.The charge storage structure is disposed on the substrate. The gate is disposed on the charge storage structure. The spacers are disposed on the sidewalls of the gate and the charge storage structure. The first doped region and the second doped region are respectively disposed in the substrate at two sides of the charge storage structure and at least located under the spacers. The isolation structures are respectively disposed in the substrate at two sides of the gate structure.
摘要:
A semiconductor device is described, which includes a substrate, a gate structure, doped regions and lightly doped regions. The substrate has a stepped upper surface, which includes a first surface, a second surface and a third surface. The second surface is lower than the first surface. The third surface connects the first surface and the second surface. The gate structure is disposed on the first surface. The doped regions are configured in the substrate at both sides of the gate structure and under the second surface. The lightly doped regions are configured in the substrate between the gate structure and the doped regions, respectively. Each lightly doped region includes a first part and a second part connecting with each other. The first part is disposed under the second surface, and the second part is disposed under the third surface.