摘要:
This is generally directed to systems and methods for reading optical black pixel cells. For example, in some embodiments, the columns of a pixel array can be shunted together during an optical black pixel readout phase of the imaging system. This may, for example, help improve correction of column fixed pattern noise or other noise. In some embodiments, the column may be shunted together during the optical black pixel readout phase of the imaging system and not shunted during other phases of the imaging system (e.g., when reading values from active pixel cells, barrier pixel cells, etc). In some embodiments, circuitry for providing the column shunting can be implemented as an independent block of the imaging system. In other embodiments, this circuitry can be implemented within other blocks of the imaging system. As an illustration, the shunting circuitry can be implemented within a VLN block of the imaging system.
摘要:
This is generally directed to systems and methods for reading optical black pixel cells. For example, in some embodiments, the columns of a pixel array can be shunted together during an optical black pixel readout phase of the imaging system. This may, for example, help improve correction of column fixed pattern noise or other noise. In some embodiments, the column may be shunted together during the optical black pixel readout phase of the imaging system and not shunted during other phases of the imaging system (e.g., when reading values from active pixel cells, barrier pixel cells, etc). In some embodiments, circuitry for providing the column shunting can be implemented as an independent block of the imaging system. In other embodiments, this circuitry can be implemented within other blocks of the imaging system. As an illustration, the shunting circuitry can be implemented within a VLN block of the imaging system.
摘要:
A CMOS image sensor includes an image pixel array, a dark pixel array, data bit liens, reference bit lines, a driver, comparators, and analog-to-digital converter (“ADC”) circuits. The image pixel array generates analog image signals in response to incident light. The dark pixel array generates analog black reference signals for analog black level calibration of the analog image signals. In one embodiment, the data bit lines each coupled to a different column of image pixels of the image pixel array and the reference bit lines each coupled to a different column of black reference pixels within the dark pixel array. The driver is coupled to the reference bit lines to drive an analog black reference signal. The comparators each couple to one of the data bit lines and each coupled to an output of the driver and offset the analog image signals with the analog black reference signals in an analog domain. The ADC circuits each coupled to an output of a comparator.
摘要:
An imaging system may include an image sensor array formed from imaging pixels with feedback loops. Each imaging pixel may include an amplifier transistor that is controlled by a voltage on a floating diffusion node and may include a feedback transistor connected between the floating diffusion node and column readout circuitry. The amplifier transistor, together with a current source in the image sensor array, may form a common-source amplifier that inversely amplifies the voltage on the floating diffusion node and provides control signals to the feedback transistor. The common-source amplifier and the feedback transistor may create a feedback loop during image readout operations and during image reset operations that clamps the voltage on the floating diffusion node.
摘要:
A CMOS image sensor includes an image pixel array, a dark pixel array, data bit liens, reference bit lines, a driver, comparators, and analog-to-digital converter (“ADC”) circuits. The image pixel array generates analog image signals in response to incident light. The dark pixel array generates analog black reference signals for analog black level calibration of the analog image signals. In one embodiment, the data bit lines each coupled to a different column of image pixels of the image pixel array and the reference bit lines each coupled to a different column of black reference pixels within the dark pixel array. The driver is coupled to the reference bit lines to drive an analog black reference signal. The comparators each couple to one of the data bit lines and each coupled to an output of the driver and offset the analog image signals with the analog black reference signals in an analog domain. The ADC circuits each coupled to an output of a comparator.
摘要:
An imaging device and method for operating the device. The imaging device comprises a pixel array that comprises a plurality of imaging pixels and dark reference pixels arranged in columns and rows. The dark reference pixels produce a noise signal that is subtracted from a pixel signal produced by the imaging pixels to correct row noise. In addition, the imaging device may comprise a hot pixel filtering circuit that blocks the output from hot pixels.
摘要:
Methods and apparatuses for row-wise dark level non-uniformity compensation of imaging sensor pixel signals. A column dependent dark reference value is determined as one of a linear and parabolic function of signal values from two areas of dark reference pixels and a column location and then used for dark level non-uniformity compensation of signal values from imaging pixels.
摘要:
A method of one aspect includes reading a reset level of an active pixel, and concurrently, reading a reset level of a reference pixel. The method also includes reading an image signal level of the active pixel, and concurrently, reading an image signal level of the reference pixel. A reduced noise image signal level of the active pixel is generated based on the reset levels and the image signal levels of the active and reference pixels. Other methods are disclosed as well as apparatus and systems.
摘要:
A system, method and apparatus implementing a multiple-row concurrent readout scheme for high-speed CMOS image sensor with backside illumination are described herein. In one embodiment, the method of operating an image sensor starts acquiring image data within a color pixel array and the image data from a first set of multiple rows in the color pixel array is then concurrently readout. Concurrently reading out the image data from the first set of multiple rows includes concurrently selecting a first portion of the image data from the first set by first readout circuitry and a second portion of the image data from the first set by second readout circuitry. The first and second portions of the image data from the first set are different and the first and second readout circuitries are also different. Other embodiments are also described.