摘要:
In an optical transmission system according to one aspect of the present invention, for transmitting a WDM light from a transmission station to a reception station, utilizing a Raman amplifier, the Raman amplifier comprises: an optical amplification medium; a pumping light source generating a plurality of pumping lights having wavelengths different from each other; an optical device introducing the plurality of pumping lights to the optical amplification medium; and control means for controlling the pumping light source, the transmission station sends out a plurality of reference lights having wavelengths at which respective Raman gain obtained by the plurality of pumping lights reach peaks or wavelengths close to the above wavelengths, and the control means controls the plurality of pumping lights based on the optical powers of the plurality of reference lights. Thus, it becomes possible to accurately manage the optical power balance of the WDM light and the optical power of the entire WDM light.
摘要:
In an optical transmission system according to one aspect of the present invention, for transmitting a WDM light from a transmission station to a reception station, utilizing a Raman amplifier, the Raman amplifier comprises: an optical amplification medium; a pumping light source generating a plurality of pumping lights having wavelengths different from each other; an optical device introducing the plurality of pumping lights to the optical amplification medium; and control means for controlling the pumping light source, the transmission station sends out a plurality of reference lights having wavelengths at which respective Raman gain obtained by the plurality of pumping lights reach peaks or wavelengths close to the above wavelengths, and the control means controls the plurality of pumping lights based on the optical powers of the plurality of reference lights. Thus, it becomes possible to accurately manage the optical power balance of the WDM light and the optical power of the entire WDM light.
摘要:
An amplification medium simulation apparatus comprises a basic data retaining unit 21, an input signal beam information retaining unit 22, and a simulation executing unit 31 approximating and calculating an output signal beam power at each signal beam wavelength outputted from the amplification medium involving a fluctuation in ion population at the metastable energy level in the amplification medium due to input of the input signal beam, by using contents retained in the basic data retaining unit 21 and the input signal beam information retaining unit 22, and outputting a result of calculation as a result of simulation of performance of the amplification medium.
摘要:
An amplification medium simulation apparatus comprises a basic data retaining unit 21, an input signal beam information retaining unit 22, and a simulation executing unit 31 approximating and calculating an output signal beam power at each signal beam wavelength outputted from the amplification medium involving a fluctuation in ion population at the metastable energy level in the amplification medium due to input of the input signal beam, by using contents retained in the basic data retaining unit 21 and the input signal beam information retaining unit 22, and outputting a result of calculation as a result of simulation of performance of the amplification medium.
摘要:
The optical amplifier realizes EDFA amplification of optical signals in new bands (the S+- and S-bands), at wavelengths of 1450 to 1530 nm. The amplifier uses multiple erbium-doped fibers to amplify optical signals at wavelengths of 1450 to 1530 nm. Each of the multiple optical filters is interposed between the individual erbium-doped fibers. The sum of the transmission characteristics of the multiple filters is identical to an inverted EDF wavelength gain characteristic at wavelengths of 1450 to 1530 nm which is then shifted to the direction that the transmission increases.
摘要翻译:光放大器实现1450至1530nm波长的新波段(S + S + S波段和S波段)光信号的EDFA放大。 放大器使用多个掺铒光纤放大1450至1530 nm波长的光信号。 多个滤光器中的每一个插入在各个掺铒光纤之间。 多个滤波器的传输特性的总和与在1450至1530nm的波长处的反向EDF波长增益特性相同,然后将其移动到传输增加的方向。
摘要:
It is an object of the present invention to provide an optical amplifier using optical amplification mediums each doped with a rare earth element for increasing amplification efficiency of signal light in S-band and the like. To this end, the optical amplifier is constituted such that, when performing optical amplification for S-band and the like in which a center wavelength of a gain peak in the optical amplification medium is located at an outside of a signal band, a gain coefficient of when a pumping condition of the optical amplification medium is maximum is set so that a parameter η obtained by dividing a minimum value of the gain coefficient in the signal band by a maximum value of the gain coefficient outside of the signal band becomes a previously set value or more, wherein, for example, the parameter η can be increased by controlling a temperature of each of a plurality of EDFs between which gain equalizers are disposed.
摘要:
An amplification medium simulation apparatus comprises a basic data retaining unit 21, an input signal beam information retaining unit 22, and a simulation executing unit 31 approximating and calculating an output signal beam power at each signal beam wavelength outputted from the amplification medium involving a fluctuation in ion population at the metastable energy level in the amplification medium due to input of the input signal beam, by using contents retained in the basic data retaining unit 21 and the input signal beam information retaining unit 22, and outputting a result of calculation as a result of simulation of performance of the amplification medium.
摘要:
In an optical transmission system according to one aspect of the present invention, for transmitting a WDM light from a transmission station to a reception station, utilizing a Raman amplifier, the Raman amplifier comprises: an optical amplification medium; a pumping light source generating a plurality of pumping lights having wavelengths different from each other; an optical device introducing the plurality of pumping lights to the optical amplification medium; and control means for controlling the pumping light source, the transmission station sends out a plurality of reference lights having wavelengths at which respective Raman gain obtained by the plurality of pumping lights reach peaks or wavelengths close to the above wavelengths, and the control means controls the plurality of pumping lights based on the optical powers of the plurality of reference lights. Thus, it becomes possible to accurately manage the optical power balance of the WDM light and the optical power of the entire WDM light.
摘要:
In an optical transmission system according to one aspect of the present invention, for transmitting a WDM light from a transmission station to a reception station, utilizing a Raman amplifier, the Raman amplifier comprises an optical amplification medium; a pumping light source generating a plurality of pumping lights having wavelengths different from each other; an optical device introducing the plurality of pumping lights to the optical amplification medium; and control means for controlling the pumping light source, the transmission station sends out a plurality of reference lights having wavelengths at which respective Raman gain obtained by the plurality of pumping lights reach peaks or wavelengths close to the above wavelengths, and the control means controls the plurality of pumping lights based on the optical powers of the plurality of reference lights. Thus, it becomes possible to accurately manage the optical power balance of the WDM light and the optical power of the entire WDM light.
摘要:
The present invention relates to an apparatus for controlling a gain of an optical amplifier, and the apparatus comprises a target gain calculating unit for calculating, as a target gain for an optical amplifier, a value obtained by increasing or decreasing a gain (output) of signal light as the number of wavelengths of wavelength-multiplexed signal light decreases, and a control signal outputting unit for outputting a control signal to the optical amplifier so as to amplify the wavelength-multiplexed signal light with the target gain calculated by the target gain calculating unit. This promptly suppresses a fluctuation of signal light level, particularly, a fluctuation of output light power of an optical amplifier stemming from a variation of the number of wavelengths of wavelength-multiplexed signal light.