摘要:
A computer-controlled optical amplifying apparatus, which includes an optical amplifying unit including an optical amplifying medium and an optical amplifying control unit controlling the optical amplifying unit under the control of a computer. This optical amplifying control unit is constituted by a status monitoring unit for monitoring the status, an optical output control unit for controlling the optical amplifying unit in accordance with the result of monitoring of status; and a status restoring unit for initializing the control status of the optical output control unit by initializing the computer when detecting an occurrence of the abnormal status by the result of monitoring of status and restoring the optical output control unit to the control status before occurrence of the related abnormal status within a relaxation time inherent in the optical amplifying medium occurring accompanied with this initialization.
摘要:
A computer-controlled optical amplifying apparatus, which includes an optical amplifying unit including an optical amplifying medium and an optical amplifying control unit controlling the optical amplifying unit under the control of a computer. This optical amplifying control unit is constituted by a status monitoring unit for monitoring the status, an optical output control unit for controlling the optical amplifying unit in accordance with the result of monitoring of status; and a status restoring unit for initializing the control status of the optical output control unit by initializing the computer when detecting an occurrence of the abnormal status by the result of monitoring of status and restoring the optical output control unit to the control status before occurrence of the related abnormal status within a relaxation time inherent in the optical amplifying medium occurring accompanied with this initialization.
摘要:
An optical amplifier for amplifying light in a longer wavelength band. The optical amplifier includes first and second optical fibers doped with a rare earth element and optically connected so that a signal light travels through the first optical fiber and then through the second optical fiber. Excitation light causes the signal light to be amplified in both the first and second optical fibers. Spontaneous emission lights are generated in the first optical fiber. An oscillation generator causes the spontaneous emission lights to oscillate in the first optical fiber, to thereby generate laser oscillation. Light generated by the laser oscillation is supplied to the second optical fiber as excitation light in the second optical fiber. The oscillation generator can be formed by fiber gratings along the first optical fiber and which reflect spontaneous emission light at a predetermined wavelength, thereby causing spontaneous emission lights to oscillate between the fiber gratings in the first optical fiber. Alternatively, the oscillation generator can be a traveling-wave type optical oscillator. In an additional embodiment, an optical amplifier includes first and second optical amplifiers amplifying first and second signal lights, respectively, the first and second signal lights being in different wavelength bands. An excitation light providing device branches a portion of the signal light amplified by the first optical amplifier, and provides the branched portion to the second optical amplifier as excitation light in the second optical amplifier.
摘要:
An optical amplifier for amplifying light in a longer wavelength band. The optical amplifier includes first and second optical fibers doped with a rare earth element and optically connected so that a signal light travels through the first optical fiber and then through the second optical fiber. Excitation light causes the signal light to be amplified in both the first and second optical fibers. Spontaneous emission lights are generated in the first optical fiber. An oscillation generator causes the spontaneous emission lights to oscillate in the first optical fiber, to thereby generate laser oscillation. Light generated by the laser oscillation is supplied to the second optical fiber as excitation light in the second optical fiber. The oscillation generator can be formed by fiber gratings along the first optical fiber and which reflect spontaneous emission light at a predetermined wavelength, thereby causing spontaneous emission lights to oscillate between the fiber gratings in the first optical fiber. Alternatively, the oscillation generator can be a traveling-wave type optical oscillator. In an additional embodiment, an optical amplifier includes first and second optical amplifiers amplifying first and second signal lights, respectively, the first and second signal lights being in different wavelength bands. An excitation light providing device branches a portion of the signal light amplified by the first optical amplifier, and provides the branched portion to the second optical amplifier as excitation light in the second optical amplifier.
摘要:
A direct modulation PSK system and method, in a coherent optical fiber transmission system, in which an injection current supplied to a laser diode is adapted to be directly varied is disclosed. In this system or method, a modulating current pulse is superposed on a bias current for the laser diode so that a specified phase condition may be satisfied. Thereby, a differential coding circuit and an external modulator being indispensable for a DPSK system become unnecessary and, in addition, the system becomes less susceptible to the influence of wavelength dispersion than the DPSK system and able to reproduce the carrier.
摘要:
M wavelength separating sections receive multiplexed optical signals each having N kinds of wavelengths different. Each of the multiplexed optical signals are separated into N optical signals. M relays conduct optical reproduction and relay to convert each of the N optical signals into electric signals and then produce optical signals modulated with desired optical wavelengths. A refill section mutually refills M sets of the reproduced and relayed optical signals. A focusing section focuses the M sets of optical signals refilled in the refill section. A light source supplies input lights having desired wavelengths, which lights are modulated in the relays. The light source includes N light sources outputting N kinds of optical wavelengths. A multiplexer/brancher multiplexes the lights from the N light sources to produce a multiplexed light and branches the multiplexed light into M×N distributed lights. M wavelength filters distribuitively receive N distributed lights of the M×N distributed lights.
摘要:
An optical transmitting device which combines a plurality of signal lights, each having a different, corresponding, frequency, into a wavelength division multiplexed signal light. The frequencies are spaced apart from each other in a manner with eliminates the effects of four-wave mixing (FWM). More specifically, the difference in frequencies of any pair-combination of the signal lights is different from the difference in frequencies between any other pair-combination of the signal lights. Moreover, the plurality of signal lights include n signal lights having respectively corresponding frequencies f1 through fn arranged in order from f1 to fn along a frequency spectrum, where frequencies f1 through fn−1 have respectively corresponding integer spacing coefficients m1 through mn−1, and frequencies fi and fi+1 are separated by mi·&Dgr;fS−F, where i=1 to (n−1) and &Dgr;fS−F is a unit of spacing between frequencies. m1 through mn−1 are all different from each other. In addition, m1 through mn−1 and the sum of any consecutive (n−2) spacing coefficients m1 through mn−1 should all be different from each other. The sum of m1 through mn−1 can be minimized to minimize required bandwidth.
摘要:
The present invention relates to an optical cross connect unit comprising M wavelength separating sections for receiving multiplexed optical signals each having N kinds of wavelengths different from each other through M optical fibers, respectively, and for wavelength-separating each of the multiplexed optical signals into N optical signals, M optical reproduction relay sections each for conducting an optical reproduction and relay in a manner of making a conversion of each of the N optical signals, wavelength-separated in each of the wavelength separating sections, into an electric signal and then modulating it with a desired optical wavelength, a refill section for mutually refilling M sets of optical signals optically reproduced and relayed in the optical reproduction relay sections, a focusing section for focusing the M sets of optical signals refilled in the refill section, and a light source unit for supplying input lights having desired wavelengths to be modulated in the M optical reproduction relay sections. The light source unit includes N light sources for outputting lights having the N kinds of optical wavelengths, a multiplexing and branching section for multiplexing the lights from the N light sources to produce a multiplexed light having N kinds of optical wavelength components and further for branching the multiplexed light into M×N lights to output them as multiplexed and distributed lights, M wavelength filter sections for distributively receiving N multiplexed and distributed lights of the M×N multiplexed and distributed lights branched in the multiplexing and branching section to output N lights due to the passage of only arbitrary wavelengths of the N kinds of optical wavelengths, and a wavelength setting control section for setting optical wavelengths, which pass through the wavelength filter sections, so that they differ from each other. The N lights from each of the M wavelength filter sections are supplied as the input lights. In the case that many light sources are necessary for the modulation processing by modulators or the like, this optical cross connect unit is also suitable because of using given wavelengths from a small number of light sources for a lot of modulation processing.
摘要:
A light branching/inserting apparatus which can easily control light signal wavelengths, and which can branch, insert or transmit light signals having an optional wavelength and optional multiplexed number, by using a wavelength selection filter utilizing acousto-optic effects. The apparatus comprises; an ADM node section 10 which has an AOTF 11 with four ports as a wavelength selection filter and is connected to a transmission path, an RF signal generator 20 which generates an RF signal of an optional frequency and applies the signal to the AOTF 11, a selected wavelength-variable light branching section 30 which receives and processes the light signal output from the branching port of the AOTF 11 for each wavelength, a light inserting section 40 which generates an optional number of insertion light signals with optional wavelengths and sends the insertion light signals to an insertion port of the AOTF 11, and a monitoring section 50 which monitors the spectrum of the light signal input/output to/from the ADM node section 10.
摘要:
A heterodyne receiver including a frequency discriminator adapted such that a signal to be subjected to frequency discrimination is divided into two signals and mixed together after one of the divided signals has been given a delay time, and additionally provided with a filter, of which a cutoff frequency is determined according to the delay time, disposed in the front stage. This results in both improvement of accuracy in frequency identification and expansion of the capture range.