摘要:
A pattern inspection apparatus can be provided, for example, in a scanning electron microscope system. When patterns of a plurality of layers are included in a SEM image, the apparatus separates the patterns according to each layer by using design data of the plurality of layers corresponding to the patterns. Consequently, the apparatus can realize inspection with use of only the pattern of a target layer to be inspected, pattern inspection differently for different layers, or detection of a positional offset between the layers.
摘要:
There is provided a pattern inspection apparatus that is capable of detecting a defect accurately and efficiently to inspect a pattern of a semiconductor device. The pattern inspection apparatus includes: a contour extraction means for extracting contour data of a pattern from a captured image of the semiconductor device; a non-linear part extraction means for extracting a non-linear part from the contour data; an angular part extraction means for extracting an angular part of a pattern from design data of the semiconductor device; and a defect detection section that compares a position of the non-linear part extracted by the non-linear part extraction section with a position of the angular part extracted by the angular part extraction section so as to detect a position of a defective part of a pattern.
摘要:
A pattern inspection apparatus can be provided, for example, in a scanning electron microscope system. When patterns of a plurality of layers are included in a SEM image, the apparatus separates the patterns according to each layer by using design data of the plurality of layers corresponding to the patterns. Consequently, the apparatus can realize inspection with use of only the pattern of a target layer to be inspected, pattern inspection differently for different layers, or detection of a positional offset between the layers.
摘要:
A pattern inspection apparatus can be provided, for example, in a scanning electron microscope system. When patterns of a plurality of layers are included in a SEM image, the apparatus separates the patterns according to each layer by using design data of the plurality of layers corresponding to the patterns. Consequently, the apparatus can realize inspection with use of only the pattern of a target layer to be inspected, pattern inspection differently for different layers, or detection of a positional offset between the layers.
摘要:
A pattern inspection apparatus can be provided, for example, in a scanning electron microscope system. When patterns of a plurality of layers are included in a SEM image, the apparatus separates the patterns according to each layer by using design data of the plurality of layers corresponding to the patterns. Consequently, the apparatus can realize inspection with use of only the pattern of a target layer to be inspected, pattern inspection differently for different layers, or detection of a positional offset between the layers.
摘要:
One of principal objects of the present invention is to provide a sample dimension measuring method for detecting the position of an edge of a two-dimensional pattern constantly with the same accuracy irrespective of the direction of the edge and a sample dimension measuring apparatus. According to this invention, to accomplish the above object, it is proposed to correct the change of a signal waveform of secondary electrons which depends on the direction of scanning of an electron beam relative to the direction of a pattern edge of an inspection objective pattern. It is proposed that when changing the scanning direction of the electron beam in compliance with the direction of a pattern to be measured, errors in the scanning direction and the scanning position are corrected. In this configuration, a sufficient accuracy of edge detection can be obtained irrespective of the scanning direction of the electron beam.
摘要:
Solving means is configured of a signal input interface, a data calculation unit, and a signal output interface. The signal input interface allows image data which is obtained by photographing hole patterns, and CAD data which corresponds to hole patterns included in the image data, to be inputted. The data calculation unit includes: CAD hole-pattern central-position detection means which detects central positions respectively of hole patterns included in the CAD data from the CAD data, and which generates data which represents, with an image, the central positions of the respective hole patterns; pattern extraction means which extracts pattern data from the image data; image hole-pattern central-position detection means which detects central positions of the respective hole patterns in the image data from the pattern data, and which generates data which represents, with an image, the central positions of these hole patterns detected from the image data; and collation process means which detects positional data in the image data corresponding to that in the CAD data through a process of collating the CAD hole-pattern central-position data with the image hole-pattern central-position data. The signal output interface outputs the positional data outputted from the data calculation unit.
摘要:
Solving means is configured of a signal input interface, a data calculation unit, and a signal output interface. The signal input interface allows image data which is obtained by photographing hole patterns, and CAD data which corresponds to hole patterns included in the image data, to be inputted. The data calculation unit includes: CAD hole-pattern central-position detection means which detects central positions respectively of hole patterns included in the CAD data from the CAD data, and which generates data which represents, with an image, the central positions of the respective hole patterns; pattern extraction means which extracts pattern data from the image data; image hole-pattern central-position detection means which detects central positions of the respective hole patterns in the image data from the pattern data, and which generates data which represents, with an image, the central positions of these hole patterns detected from the image data; and collation process means which detects positional data in the image data corresponding to that in the CAD data through a process of collating the CAD hole-pattern central-position data with the image hole-pattern central-position data. The signal output interface outputs the positional data outputted from the data calculation unit.
摘要:
One of principal objects of the present invention is to provide a sample dimension measuring method for detecting the position of an edge of a two-dimensional pattern constantly with the same accuracy irrespective of the direction of the edge and a sample dimension measuring apparatus. According to this invention, to accomplish the above object, it is proposed to correct the change of a signal waveform of secondary electrons which depends on the direction of scanning of an electron beam relative to the direction of a pattern edge of an inspection objective pattern. It is proposed that when changing the scanning direction of the electron beam in compliance with the direction of a pattern to be measured, errors in the scanning direction and the scanning position are corrected. In this configuration, a sufficient accuracy of edge detection can be obtained irrespective of the scanning direction of the electron beam.
摘要:
One of principal objects of the present invention is to provide a sample dimension measuring method for detecting the position of an edge of a two-dimensional pattern constantly with the same accuracy irrespective of the direction of the edge and a sample dimension measuring apparatus. According to this invention, to accomplish the above object, it is proposed to correct the change of a signal waveform of secondary electrons which depends on the direction of scanning of an electron beam relative to the direction of a pattern edge of an inspection objective pattern. It is proposed that when changing the scanning direction of the electron beam in compliance with the direction of a pattern to be measured, errors in the scanning direction and the scanning position are corrected. In this configuration, a sufficient accuracy of edge detection can be obtained irrespective of the scanning direction of the electron beam.