摘要:
A nickel electrode for alkaline secondary battery including a porous sintered nickel substrate loaded with a nickel hydroxide-based active material, the nickel electrode has a configuration wherein a surface portion of the active material loaded into the sintered nickel substrate is provided with a combination of a first coating layer of a suitable compound and a second coating layer of a suitable compound, or a coating layer of a compound of two or more suitable elements, or wherein the coating layer of two or more suitable elements is formed between the sintered nickel substrate and the active material.
摘要:
A separator for a nickel-metal hydride storage battery having a hydrogen-absorbing alloy as a negative electrode. The separator is a laminate of a substrate and a porous hydrophilic film.
摘要:
In a hydrogen absorbing alloy electrode employed as a negative electrode of an alkaline storage battery, a covering layer containing at least one of metal elected from nickel and cobalt, and carbon particles is formed on a surface of the hydrogen absorbing alloy electrode or hydrogen absorbing alloy particles used in the hydrogen absorbing alloy electrode.
摘要:
In an alkaline secondary battery provided with a positive electrode, a negative electrode, a separator to be interposed between the positive electrode and the negative electrode, and an alkaline electrolyte solution, the above-mentioned separator has carbon-carbon double bonds. Further, an average amount of carbon-carbon double bonds in the separator is in the range of 10 &mgr;mol/g to 200 &mgr;mol/g, and an average amount of increased nitrogen in the separator after the separator is immersed in an alkaline aqueous solution having ammonium salt dissolved therein is not less than 140 &mgr;g/g.
摘要:
In a hydrogen absorbing alloy electrode containing hydrogen absorbing alloy powder and a binding agent, employed as the binding agent is a copolymer of aromatic vinyl and at least one of acrylic ester and methacrylic acid ester, in which the total content of acrylic ester units and methacrylic acid ester units is in the range of 43 to 90% by weight of the whole copolymer, and the hydrogen absorbing alloy electrode is used as a negative electrode of a nickel-metal hydride battery.
摘要:
A hydrogen absorbing alloy electrode is prepared by adding a binder to a hydrogen absorbing alloy powder and forming the mixture to a shape of an electrode, and the binder is partly or entirely made of poly N-vinyl acetamide, whereby higher high-rate discharge characteristics are obtained than conventionally.
摘要:
A nickel-metal hydride storage battery which includes a positive electrode containing nickel hydroxide, a negative electrode containing a hydrogen absorbing alloy and an alkaline electrolyte, wherein the positive electrode contains a hydroxide and/or an oxide of an element selected from the group consisting of calcium, strontium, scandium, yttrium, lanthanoid and bismuth, and the negative electrode contains a hydroxide and/or an oxide of at least one element selected from the group consisting of scandium, yttrium and lanthanoid.
摘要:
A nickel-metal hydride storage battery comprising a positive electrode containing nickel hydroxide, a negative electrode containing a hydrogen absorbing alloy and an alkaline electrolyte, wherein the positive electrode contains a hydroxide and/or an oxide of an element selected from the group consisting of calcium, strontium, scandium, yttrium, lanthanoid and bismuth, and the negative electrode contains germanium.
摘要:
A nickel-metal hydride battery provided with a positive electrode using nickel hydroxide, a negative electrode using hydrogen absorbing alloy, an alkaline electrolyte solution, and a separator 3 separating the positive electrode and the negative electrode, wherein use is made of the negative electrode and/or the alkaline electrolyte solution comprising Mo or W, the separator using sulfonized olefinic resin, and the positive electrode comprising hydroxide and/or oxide of at least one element selected from Ca, Sr, Sc, Y, lanthanoid and Bi.
摘要:
An alkaline storage battery having a positive electrode (1), a negative electrode (2), and an alkaline electrolyte solution, and the negative electrode having fluorinated oil being present on the surface thereof. The negative electrode includes a hydrogen-absorbing alloy represented by the general formula Ln1-xMgxNiy-a-bAlaMb, where Ln is at least one element selected from Zr, Ti, and a rare-earth element including Y; M is at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, and B; 0.05≦x≦0.30; 0.05≦a≦0.30; 0≦b≦0.50; and 2.8≦y≦3.9.