摘要:
A driving circuit provided by the present invention is characterized in that the driving circuit selects a gray-scale voltage in accordance with high-order bits of display data from a group of gray-scale voltages with their voltage level varying step by step from fractional time period to fractional time period, which are set in advance, and outputs the selected gray-scale voltage during a time period between the start of a scanning period and a time at which a number assigned to a fractional time period matches quantitative information contained in low-order bits of the display data. In addition, the driving circuit provided by the present invention is also characterized in that the time ratio of the first fractional time period is set at a relatively high value while the time ratios of the second and subsequent fractional time periods are each set at a relatively low value.
摘要:
A driving circuit provided by the present invention is characterized in that the driving circuit selects a gray-scale voltage in accordance with high-order bits of display data from a group of gray-scale voltages with their voltage level varying step by step from fractional time period to fractional time period, which are set in advance, and outputs the selected gray-scale voltage during a time period between the start of a scanning period and a time at which a number assigned to a fractional time period matches quantitative information contained in low-order bits of the display data. In addition, the driving circuit provided by the present invention is also characterized in that the time ratio of the first fractional time period is set at a relatively high value while the time ratios of the second and subsequent fractional time periods are each set at a relatively low value.
摘要:
A driver for driving a display device, which has signal lines arranged in a first direction, scanning lines arranged in a second direction intersecting with the first direction, and pixels provided to correspond to intersections of the signal lines and the scanning lines, each pixel having a pixel electrode connected to the signal line through a capacitance and a switching element whose first, second, and third terminals are connected respectively to the signal line, the scanning line, and the pixel electrode, comprises: a converter for converting inputted display data to a gray-scale voltage and outputting the gray-scale voltage to the signal lines; and a switching circuit for opening/closing a first electrical coupling provided between the signal line and the converter and a second electrical coupling provided between the signal lines, wherein one scanning period for scanning the scanning lines includes a first period during which the switching circuit closes the first electrical coupling and opens the second electrical coupling, and a second period during which the switching circuit opens the first electrical coupling and closes the second electrical coupling.
摘要:
A liquid crystal display is provided with: a tap adjustment register for adjusting a gray scale level to a gray scale voltage in intermediate portions close to the end portions of the gamma characteristic; and a partial-voltage-ratio adjustment register for adjusting a ratio of a gray scale voltage among a plurality of gray scale levels in the intermediate portions close to the end portions of the gamma characteristic, in addition to an amplitude adjustment register for adjusting an amplitude of a gamma characteristic which determines a relation between gray scale levels and gray scale voltages or brightness levels on a display panel; a gradient adjustment register for adjusting a gradient of intermediate portions of the gamma characteristic while fixing end portions of the gamma characteristic; and a fine adjustment register for finely adjusting the intermediate portions of the gamma characteristic for each gray scale level.
摘要:
A liquid crystal display is provided with: a tap adjustment register for adjusting a gray scale level to a gray scale voltage in intermediate portions close to the end portions of the gamma characteristic; and a partial-voltage-ratio adjustment register for adjusting a ratio of a gray scale voltage among a plurality of gray scale levels in the intermediate portions close to the end portions of the gamma characteristic, in addition to an amplitude adjustment register for adjusting an amplitude of a gamma characteristic which determines a relation between gray scale levels and gray scale voltages or brightness levels on a display panel; a gradient adjustment register for adjusting a gradient of intermediate portions of the gamma characteristic while fixing end portions of the gamma characteristic; and a fine adjustment register for finely adjusting the intermediate portions of the gamma characteristic for each gray scale level.
摘要:
In consideration of the current leakage path of a liquid crystal panel and a signal line voltage fluctuation due to the current leakage path, a γ adjusting function (second driving method) is applied for each divided period in the first driving method. In a signal line driving unit, a gray scale voltage obtained by adding or subtracting a voltage fluctuation value different in each of the output periods of each gray scale is generated, and a gray scale voltage taking the voltage fluctuation value into consideration is applied to a signal line.
摘要:
In consideration of the current leakage path of a liquid crystal panel and a signal line voltage fluctuation due to the current leakage path, a γ adjusting function (second driving method) is applied for each divided period in the first driving method. In a signal line driving unit, a gray scale voltage obtained by adding or subtracting a voltage fluctuation value different in each of the output periods of each gray scale is generated, and a gray scale voltage taking the voltage fluctuation value into consideration is applied to a signal line.
摘要:
A display driver for outputting gradation voltages corresponding to gradation data from an external device to pixels. The display driver includes a generator for generating a plurality of gradation voltages having a plurality of levels based on a reference voltage, and a selector for selecting at least one gradation voltage corresponding to the gradation data from the plurality of gradation voltages generated by the generator. The gradation data includes multi-bits for each color of red, green and blue, and the generator outputs or stops outputting each gradation voltage according to data for color reduction from the external device. The generator stops outputting at least one gradation voltage that is unnecessary for displaying as a result of the color reduction, when the color of the gradation data is reduced according to the data for color reduction.
摘要:
An object of the present invention is to provide a signal line driving circuit capable of easily and optimally adjusting the gamma characteristics of R, G, and B self-emitting element groups (e.g., organic EL element groups) such that each gamma characteristic matches the characteristics of the self-emitting panel by accommodating variations among the characteristics of the R, G, and B self-emitting element groups, thereby providing enhanced image quality and versatility.A self-emitting display driving circuit (a signal line driving circuit) 302 includes 3 gray-scale voltage generating circuits 311 and 3 control registers 308 for R, G, and B self-emitting element groups, respectively, and these gray-scale voltage generating circuits and control registers can be adjusted separately. This arrangement makes it possible to accommodate variations among the characteristics of the R, G, and B self-emitting element groups and thereby provide enhanced image quality on the self-emitting display.
摘要:
An object of the present invention is to provide a signal line driving circuit capable of easily and optimally adjusting the gamma characteristics of R, G, and B self-emitting element groups (e.g., organic EL element groups) such that each gamma characteristic matches the characteristics of the self-emitting panel by accommodating variations among the characteristics of the R, G, and B self-emitting element groups, thereby providing enhanced image quality and versatility. A self-emitting display driving circuit (a signal line driving circuit) 302 includes 3 gray-scale voltage generating circuits 311 and 3 control registers 308 for R, G, and B self-emitting element groups, respectively, and these gray-scale voltage generating circuits and control registers can be adjusted separately. This arrangement makes it possible to accommodate variations among the characteristics of the R, G, and B self-emitting element groups and thereby provide enhanced image quality on the self-emitting display.