摘要:
An apparatus and method for calibrating a multi-color imaging system are provided. Color values are measured for each of the different color patches, and compared to target process-sensitive colors color values, representing a weight-adjusted memory color. An error value is calculated. The error value represents a deviation of the measured color values from the target color values. The input values for each colorant then are independently adjusted to reduce the error value to a predetermined degree.
摘要:
A method of printing comprising the steps of detecting a contour in a first color space image, locating the contour, mapping the image into the second image space, and changing the mapping curve shape, changing the printer profile (e.g. changing the printer mapping function), editing the image, or other method to reduce or eliminate perceived contouring.
摘要:
Compensation is performed for nonuniformity in a printer. The printer has a photoreceptor and a print head with a plurality of different light sources, each light source capable of producing a plurality of different levels of light. A plurality of stored gain control signals for each light source are related to the light output of that light source. Print job data includes screened pixel levels and a halftone screen specification. The stored gain control signals are adjusted based on the halftone screen specification. The screened pixel levels are modified using the adjusted gain control signals to provide engine pixel levels. Those levels are provided to corresponding light sources to expose the photoreceptor in respective pixel areas with light corresponding to the compensated pixel levels.
摘要:
Apparatus for depositing a texture on a receiver includes a data source that provides multilevel input tint data values. A lossy compressor produces compressed multilevel tint data values from the multilevel input tint data values. A decompressor produces multilevel decompressed tint data values from the compressed multilevel tint data values. A texture memory receives those values from the decompressor and provides corresponding multilevel texture pixel data values. A print engine deposits at each of a plurality of pixel sites on the receiver an amount of texture-forming material corresponding to the respective multilevel texture pixel data value. A loader loads into the texture memory a texture set including multilevel texture pixel data values for each of a plurality of textures, and each texture in the texture set corresponds to a respective selected range of multilevel decompressed tint data value.
摘要:
A three-dimensional halftone screen is provided that is suited for multilevel printing. The three-dimensional halftone screen includes a plurality of planes each corresponding to one or more input intensity levels of an input RIPped pixel. Within the planes are screen dots, each associated with one or more output exposure intensity values representing an intensity of an exposure dot corresponding to the input RIPped pixel.
摘要:
Forming a multicolor image on a receiver member wherein a database of custom color profiles based on substrate physical properties and printing process characteristics is established. A set of universal color profiles is determined based on physical properties of substrates from clustered custom profiles. One universal color profile is assigned to a target substrate from the set of universal color profiles based on objective or subjective feedback. Thereafter, a multicolor toner image is formed on the receiver member with toners of at least three different colors of toner pigments which form various combinations of colors at different pixel locations on the receiver member to form the multicolor toner image thereon using the assigned one color profile. Based on objective or subjective feedback, the selected one universal color profile is modified, or a different universal color profile is selected.
摘要:
Apparatus for depositing a texture on a receiver includes a data source adapted to receive a job specification and provide corresponding texture identification data values. A texture memory receives the texture identification data values from the data source and provides corresponding multilevel texture pixel data values. A loader loads into the texture memory a texture set including multilevel texture pixel data values for each of a plurality of textures, each texture in the texture set corresponding to one or more of the texture identification data values. A print engine deposits at each of a plurality of pixel sites on the receiver an amount of texture-forming material corresponding to the respective multilevel texture pixel data value.
摘要:
Methods of improving image quality by reducing grain and texture in a printed image are provided. According to one embodiment, a method of reducing grain and texture in an image includes the steps of providing a light color toner and a dark color toner, providing an aperiodic micrononuniformity map, using the aperiodic micrononuniformity map to determine an acceptable domain that includes a plurality of combinations of the light color toner and the dark color toner, and forming an image by selecting one combination of the light color toner and the dark color toner from the plurality of combinations of the light color toner and the dark color toner.
摘要:
One or more printers or printing systems are connected to a scanning device. Each printer includes one or more color modules that are used during a printing operation. A printer prints a target for each color module or color channel. The printed targets are then scanned by the scanning device. The printed targets may be rotated to any angle and then scanned by the scanning device. The scanned raster data is processed by a controller to detect non-uniformities in at least one density image and to generate one or more correction profiles for the printer. When an image is to be printed, one or more controllers receive the image data and use the one or more correction profiles to correct or compensate for the non-uniformities during the exposure process.
摘要:
Apparatus for depositing a texture on a receiver includes a data source that provides multilevel input tint data values based on a job specification. A lossy compressor produces compressed multilevel tint data values from the multilevel input tint data values. A decompressor produces multilevel decompressed tint data values from the compressed multilevel tint data values. A texture memory receives those values from the decompressor and provides corresponding multilevel texture pixel data values. A print engine deposits at each of a plurality of pixel sites on the receiver an amount of texture-forming material corresponding to the respective multilevel texture pixel data value. A loader loads into the texture memory a texture set including multilevel texture pixel data values for each of a plurality of textures, and each texture in the texture set corresponds to a respective selected range of multilevel decompressed tint data value.