摘要:
A method for preventing a fuel cell voltage potential reversal including determining a relationship between the cell resistance and the current of a fuel cell stack at which a fuel cell voltage potential reversal will occur, operating the fuel cell stack according to a power demand requested, and determining the maximum cell resistance of the fuel cells in the stack. If the maximum cell resistance exceeds a threshold value for the current at which the fuel cell stack is being operated, the operation of the fuel cell stack is restricted to prevent the fuel cell voltage potential from reversing.
摘要:
A method for preventing a fuel cell voltage potential reversal including determining a relationship between the cell resistance and the current of a fuel cell stack at which a fuel cell voltage potential reversal will occur, operating the fuel cell stack according to a power demand requested, and determining the maximum cell resistance of the fuel cells in the stack. If the maximum cell resistance exceeds a threshold value for the current at which the fuel cell stack is being operated, the operation of the fuel cell stack is restricted to prevent the fuel cell voltage potential from reversing.
摘要:
A fuel cell stack that includes a gas diffusion media for the end cells in the stack that has less of an intrusion into the flow field channels of the end cells that the other cells, so as to increase the flow rate through the flow channels in the end cells relative to the flow rate through the flow channels in the other cells. A different diffusion media can be used in the end cells than the nominal cells, where the end cell diffusion media has less of a channel intrusion as a result of diffusion media characteristics. Also, the same diffusion media could be used in the end cells as the nominal cells, but the end cell diffusion media layers could be thinner than the nominal cell diffusion media layers. Further, a higher amount of pre-compression can be used for the diffusion media in the end cells.
摘要:
An electrochemical conversion assembly (10) is provided comprising a plurality of electrochemical conversion cells arranged in a conductively coupled fuel cell stack (20), a condition sensor (30, 40) operatively coupled to the fuel cell stack (20), and a programmable controller operatively coupled to the condition sensor and the fuel cell stack. The condition sensor is configured to measure a rate of change of hydration in the proton exchange membrane and either the condition sensor or the programmable controller is configured to generate a signal indicative of the measured rate of change of hydration. The programmable controller is configured to facilitate control of at least one operating parameter of the electrochemical conversion assembly by monitoring the signal indicative of the measured rate of change of hydration. The condition sensor can be configured to detect a dimensional change or a change in compression of the conductively coupled fuel cell stack as the membrane hydration changes. Additional embodiments are disclosed.
摘要:
A method for reducing the compression set of GDL during the fuel cell operation and a method for reducing the intrusion of the GDL into flow-field channels, both achieved by pre-compression preconditioning the GDL before placing it into the fuel cell. This preconditioning is performed in order to reduce the loss of compression during the life of the stack and the mal-distribution of reactant gases, and ultimately achieve the benefits of higher power output and more stable performance.
摘要:
An electrochemical conversion assembly (10) is provided comprising a plurality of electrochemical conversion cells arranged in a conductively coupled fuel cell stack (20), a condition sensor (30, 40) operatively coupled to the fuel cell stack (20), and a programmable controller operatively coupled to the condition sensor and the fuel cell stack. The condition sensor is configured to measure a rate of change of hydration in the proton exchange membrane and either the condition sensor or the programmable controller is configured to generate a signal indicative of the measured rate of change of hydration. The programmable controller is configured to facilitate control of at least one operating parameter of the electrochemical conversion assembly by monitoring the signal indicative of the measured rate of change of hydration. The condition sensor can be configured to detect a dimensional change or a change in compression of the conductively coupled fuel cell stack as the membrane hydration changes. Additional embodiments are disclosed.
摘要:
A separator plate for a fuel cell is provided, including a substrate having a radiation-cured first flow field layer disposed thereon. A method for fabricating the separator plate is also provided. The method includes the steps of providing a substrate; applying a first radiation-sensitive material to the substrate; placing a first mask between a first radiation source and the first radiation-sensitive material, the first mask having a plurality of substantially radiation-transparent apertures; and exposing the first radiation-sensitive material to a plurality of first radiation beams to form a radiation-cured first flow field layer adjacent the substrate. A fuel cell having the separator plate is also provided.
摘要:
A method for fabricating a radiation-cured structure is provided. The method includes the steps of providing a first radiation-sensitive material and a second radiation-sensitive material adjacent the first radiation-sensitive material. The first radiation-sensitive material has a first sensitivity. The second radiation-sensitive material has the first sensitivity and a second sensitivity different from the first sensitivity. At least one mask is placed between at least one radiation source and the first and second radiation-sensitive materials. The mask has a plurality of substantially radiation-transparent apertures. The first and second radiation-sensitive materials are then exposed to a plurality of radiation beams through the radiation-transparent apertures in the mask to form a first construct in the first radiation-sensitive material and a second construct in the second radiation-sensitive material. The first construct and the second construct cooperate to form the radiation-cured structure.
摘要:
A method for fabricating a radiation-cured structure is provided. The method includes the steps of providing a first radiation-sensitive material and applying a second radiation-sensitive material to the first radiation-sensitive material. The first radiation-sensitive material has a first sensitivity. The second radiation-sensitive material has a second sensitivity different from the first sensitivity. At least one mask is placed between at least one radiation source and the first and second radiation-sensitive materials. The mask has a plurality of substantially radiation-transparent apertures. The first and second radiation-sensitive materials are then exposed to a plurality of radiation beams through the radiation-transparent apertures in the mask to form a first construct in the first radiation-sensitive material and a second construct in the second radiation-sensitive material. The first construct and the second construct cooperate to form the radiation-cured structure.
摘要:
A fuel cell system is provided including a fuel cell stack having a first end and second end. The fuel cell stack includes at least one fuel cell having a membrane-electrode assembly disposed between adjacent gas diffusion layers. The fuel cell system further includes a compression retention system having a plurality of compliant straps adapted to apply a compressive force to the fuel cell stack. The plurality of compliant straps are further adapted to accommodate an expansion of the fuel cell stack during an operation thereof and maintain the compressive force within a desired range.