摘要:
Compensation for rendering device non-uniformities is provided for halftoned images. A spatially dependent tone reproduction curve (TRC) provides compensation values. Pixel location information is used to access TRC values. For example, the values are modification values. The modification values are added to the pixel values to generate combined values. Quantization is applied to the combined values to prepare compensated image data for rendering. For example, Rank Ordered Error Diffusion is applied to the combined values. The combined values may include diffused error from previously processed pixels. Gray values may be estimated for the respective pixels. The estimated gray values may be used to access compensation information from a TRC that is both spatially and gray value dependent. Mathematical basis decomposition is used to reduce TRC memory requirements. For example, Discrete Cosine Transformation, Singular Value Decomposition or Principal Component Analysis is used to determine a compact form for the TRC.
摘要:
An embodiment generally relates to systems and methods for determining cell phone usage automatically by individuals operating vehicles. A processing module can process multi-spectral images or videos of individuals and detect different regions in the image such as face regions, hand regions, and cell phone regions. Further, the processing module can analyze the regions based on locations and numbers of skin pixels and cell phone pixels to determine if the individual is holding his or her cell phone near his or her face. Based on the analysis, it can be determined whether the individual is operating the cell phone. Further, the analysis can yield a confidence level associated with the cell phone usage.
摘要:
Compensation for rendering device non-uniformities is provided for halftoned images. A spatially dependent tone reproduction curve (TRC) provides compensation values. Pixel location information is used to access TRC values. For example, the values are modification values. The modification values are added to the pixel values to generate combined values. Quantization is applied to the combined values to prepare compensated image data for rendering. For example, Rank Ordered Error Diffusion is applied to the combined values. The combined values may include diffused error from previously processed pixels. Gray values may be estimated for the respective pixels. The estimated gray values may be used to access compensation information from a TRC that is both spatially and gray value dependent. Mathematical basis decomposition is used to reduce TRC memory requirements. For example, Discrete Cosine Transformation, Singular Value Decomposition or Principal Component Analysis is used to determine a compact form for the TRC.
摘要:
Image data is scaled, rotated and/or otherwise manipulated. Diffusive effects of associated interpolation and/or re-sampling are compensated for, or corrected, by applying an adaptive packing form of error diffusion to output data of one or more manipulating transforms. For example, rank order error diffusion is applied to output data of a manipulating transform, thereby restoring compaction to otherwise diffuse halftone structures (e.g., halftone dots, lines, etc), saturated text and/or other small, high contrast image elements.
摘要:
Image data is scaled, rotated and/or otherwise manipulated. Diffusive effects of associated interpolation and/or re-sampling are compensated for, or corrected, by applying an adaptive packing form of error diffusion to output data of one or more manipulating transforms. For example, rank order error diffusion is applied to output data of a manipulating transform, thereby restoring compaction to otherwise diffuse halftone structures (e.g., halftone dots, lines, etc), saturated text and/or other small, high contrast image elements.
摘要:
An embodiment generally relates to systems and methods for determining cell phone usage automatically by individuals operating vehicles. A processing module can process multi-spectral images or videos of individuals and detect different regions in the image such as face regions, hand regions, and cell phone regions. Further, the processing module can analyze the regions based on locations and numbers of skin pixels and cell phone pixels to determine if the individual is holding his or her cell phone near his or her face. Based on the analysis, it can be determined whether the individual is operating the cell phone. Further, the analysis can yield a confidence level associated with the cell phone usage.
摘要:
Images that include halftone structures are sharpened. A copy of received halftone image data is blurred, thereby reducing a detectability of edges of the halftone structures. Edges remaining in the blurred image data are detected. An edge enhancement image is generated based on the detected edges. The original received halftone image data is combined with the edge enhancement image, thereby generating sharpness enhanced image data having halftone structures. The sharpness enhanced image data having halftone structures can be rendered through a halftone screen that is compatible with a halftone screen that was used to generate the originally received image data. Alternatively, the sharpness enhanced image data having halftone structures is rendered according to error diffusion techniques, such as, rank order error diffusion in order to achieve or maintain dot or halftone structure compaction.
摘要:
Images that include halftone structures are sharpened. A copy of received halftone image data is blurred, thereby reducing a detectability of edges of the halftone structures. Edges remaining in the blurred image data are detected. An edge enhancement image is generated based on the detected edges. The original received halftone image data is combined with the edge enhancement image, thereby generating sharpness enhanced image data having halftone structures. The sharpness enhanced image data having halftone structures can be rendered through a halftone screen that is compatible with a halftone screen that was used to generate the originally received image data. Alternatively, the sharpness enhanced image data having halftone structures is rendered according to error diffusion techniques, such as, rank order error diffusion in order to achieve or maintain dot or halftone structure compaction.
摘要:
A system for enabling depth perception of image content in a rendered composite image, wherein illuminant/colorant depth discrimination encoding provides encoding of first and second source images in a composite image, for the purposes of subsequent illuminant/colorant depth discrimination decoding. Composite image rendering allows for rendering the composite image in a physical form. Illuminant/colorant depth discrimination decoding allows recovery of the first and second source images, thus offering to an observer the perception of spatial disparity between at least one of the recovered source images and some or all of the remaining image content perceived in the rendered composite image.
摘要:
A color correction method includes for each of a plurality of color separations of a digital image, establishing a tone reproduction curve in the form of a vector. The vector is a function of a plurality of basis vectors. The basis vectors account for colorant interactions between a primary colorant with which the color separation is to be rendered and at least one secondary colorant with which at least a second of the plurality of color separations is to be rendered. The vector includes modified input values corresponding to input values for the color separation which vary, depending on the input values of at least the second color separation. For a pixel of interest in the digital image, a modified input value for the color separation which corresponds to the input value of the given color separation is identified from the vector.