摘要:
A method for deterministic directional discovery of neighbor devices by a device in a wireless network comprises dividing equally an access time to a discovery channel to predefined number of sector scanning periods (410), wherein each sector scanning period includes a predefined number of discovery sweep periods (430), and each discovery sweep period includes a predefined number of time slots (440); scanning the discovery channel in a single sector during a current sector scanning period (S310); transmitting a discovery frame towards each sector during each time slot of each discovery sweep period of the current sector scanning period (S320); checking if at least one response to a transmitted discovery frame has been received during the current sector scanning period (S330); and setting the device to scan the discovery channel in a next sector during a next sector scanning period, thereby sequentially accessing the predefined number of sector scanning periods (S35).
摘要:
A method for deterministic directional discovery of neighbor devices by a device in a wireless network comprises dividing equally an access time to a discovery channel to predefined number of sector scanning periods (410), wherein each sector scanning period includes a predefined number of discovery sweep periods (430), and each discovery sweep period includes a pre-defined number of time slots (440); scanning the discovery channel in a single sector during a current sector scanning period (S310); transmitting a discovery frame towards each sector during each time slot of each discovery sweep period of the current sector scanning period (S320); checking if at least one response to a transmitted discovery frame has been received during the current sector scanning period (S330); and setting the device to scan the discovery channel in a next sector during a next sector scanning period, thereby sequentially accessing the predefined number of sector scanning periods (S35)
摘要:
A method and wireless device merge multiple unsynchronized beacon groups in a wireless network, each beacon group including at least one wireless device. A first beacon is received from at least one first wireless device in a first beacon group (S514), the first wireless device having a first directional antenna. A second beacon is received from at least one second wireless device in a second beacon group that is not synchronized with the first beacon group (S516), the second wireless device having a second directional antenna. A first response beacon is relocated (S520) and sent (S522) to the first wireless device in the first beacon group. The relocated first response beacon instructs the first wireless device to relocate the first beacon. Accordingly, the second beacon, the relocated first response beacon, and the relocated first beacon are synchronized.
摘要:
In a coordination-free rendezvous method for a communication network, time is divided into superslots with each superslot being further divided into slots. At least one first-class slot and at least one second-class slot are selected out of the slots of each superslot. The relative position between the first-class slot and the second-class slot is changed every superslot, thereby the first-class slots or the second-class slots between or among devices of the communication network may overlap each other in a periodic manner.
摘要:
A method and apparatus discover hidden wireless devices in a wireless network using a directional antenna system, preventing partitioning of the wireless network. A first wireless device located in a first antenna sector is joined in response to an initial first beacon. First beacons are received from the joined first wireless device during corresponding first beacon periods. At least a second antenna sector is scanned during at least one first beacon period to listen for second beacons from a second wireless device in the second antenna sector, while remaining joined with the first wireless device. The first beacons are not received while the second antenna sector is scanned. The second wireless device is joined in response to an initial second beacon. Second beacons are then received from the joined second wireless device during corresponding second beacon periods, and the first beacons are received during the corresponding first beacon periods.
摘要:
In a wireless communication network (300) comprising a plurality of devices (100), a method of discovering a route for transmitting data from a source device (110A) to a destination device (110D) via multi-hop relay, includes broadcasting from the source device (110A) a route discovery request for transmitting data to the destination device (HOD). The route discovery request includes: a first field indicating a hop-count limit, a second field indicating a number of slots, X, required for transmitting the data, a third field indicating an ID for the source device (110A), and a fourth field indicating an ID for the destination device (HOD). The source device (110A) then receives a route discovery response indicating a route from the source device (110A) to the destination device (HOD). The route discovery response includes a first field indicating a number of hops between the source device (110A) and the destination device (HOD).
摘要:
A wireless network (300) operates with at least two different types of wireless devices, including Type-A wireless devices (320) that communicate using a first transmission scheme and Type-B wireless devices (310) that communicate using a second transmission scheme. Type-A wireless devices (320) can transmit Type-A beacons (325) using the first transmission scheme. Type-B wireless devices (310) can transmit and receive Type-B beacons (315) using the second transmission scheme. Type-B wireless devices (310) can also transmit Type-A beacons (325) using the first transmission scheme, but cannot receive the Type-A beacons (325). Before establishing communications in a new channel, a Type-B wireless device (310) performs power sensing to detect the presence of any non-Type-B wireless devices (200), and if such wireless devices (200) are detected, it switches to another channel. Otherwise, it transmits a Type-A beacon (325) and a Type-B beacon (315) to establish communications in the channel.
摘要:
An antenna (740) listens in each of a plurality of steerable sectors to determine if a primary beacon is present; transmits a primary device beacon in each of the plurality of steerable sectors if the primary beacon is not present; and transmits a secondary device beacon in a first one of the plurality of steerable sectors if a primary beacon is discovered. The antenna (740) may transmit the primary and secondary beacons on a different communication channel than a data communication channel or may transmit the primary and secondary beacons on a same communication channel as a data communication channel. The antenna (740) may divide the same communication channel into time slices wherein different time slices of a super-frame are utilized for the primary beacon, the secondary beacon, and the data communication. The secondary device (C, D) sends additional beacons in additional sectors if it receives non-primary beacon from the additional sectors.
摘要:
A wireless network (300) operates with at least two different types of wireless devices, including Type-A wireless devices (320) that communicate using a first transmission scheme and Type-B wireless devices (310) that communicate using a second transmission scheme. Type-A wireless devices (320) can transmit Type-A beacons (325) using the first transmission scheme. Type-B wireless devices (310) can transmit and receive Type-B beacons (315) using the second transmission scheme. Type-B wireless devices (310) can also transmit Type-A beacons (325) using the first transmission scheme, but cannot receive the Type-A beacons (325). Before establishing communications in a new channel, a Type-B wireless device (310) performs power sensing to detect the presence of any non-Type-B wireless devices (200), and if such wireless devices (200) are detected, it switches to another channel. Otherwise, it transmits a Type-A beacon (325) and a Type-B beacon (315) to establish communications in the channel.
摘要:
A system and method (600) of communication by a wireless device (200) operating according to a first communication protocol in at least a first set of frequency bands (320), provides a silent period for detecting the presence of a second wireless device operating according to a second communication protocol in a second set of frequency bands (310) that at least partially overlaps the first set of frequency bands (320).