摘要:
Methods of fabricating nano-structures on a substrate surface are provided including the use of small initial pilot nano-structures patterned in a writing layer which are enlarged upon transfer to a pattern transfer layer among process layers applied to the substrate material, before removal of the writing layer to reveal the enlarged nano-structures. Enlarged nano-structures are transferred to the substrate by etch techniques to produce desired final enlarged nano-structures in the substrate surface. Raised out of plane and etched-in-plane nano-structures may be produced. Multiple geometries, configurations and spacings of 2D (such as in-plane nano-structures) and/or 3D (such as out of plane nano-structures) nano-structures and/or grids or arrays thereof may be fabricated on a surface of a substrate according to a single fabrication process.
摘要:
An organic electronic device (e.g. OLED, OPV, OES, OTFT) is disclosed. The organic electronic device includes a carrier substrate, a first electrode layer disposed on the carrier substrate, an organic active electronic region disposed on the first electrode layer, and an indium second electrode layer disposed and formed on the organic active electronic region by applying heat on an indium solid at a temperature between the melting temperature of indium and a threshold operating temperature of the organic layers to melt the indium solid on the organic active electronic region. The organic active electronic region includes one or more organic layers. A method of manufacturing an organic electronic device is also disclosed.
摘要:
An organic optoelectronic device is disclosed. The organic optoelectronic device includes a carrier substrate, an anode electrode layer disposed at least partially on the carrier substrate, an organic electronic active region including one or more organic layers and disposed at least partially on the anode electrode layer, and a cathode electrode layer disposed at least partially on the organic photoactive layer. The anode electrode layer has a periodic array of sub-wavelength nanostructures. Methods of manufacturing an organic optoelectronic device are also disclosed.