Abstract:
A method of manufacturing an electrode structure for a device, such as a GaN or AlGaN device is described. In one example, the method includes providing a substrate (212) of GaN or AlGaN with a surface region of the GaN or AlGaN exposed through an opening (216) in a layer of silicon nitride (214) formed on the substrate. The method further includes depositing layers of W (222), in one example, or Ni (220) and W (222), in another example, on the substrate and the layer of silicon nitride using reactive evaporation and photoresist layers (230) having an undercut profile for liftoff. The method further includes removing the photoresist layers having the undercut profile, and depositing layers of WN (224) and Al over the underlying layers of W or Ni and W by sputtering.
Abstract:
This disclosure teaches a method for producing a nano metal mesh. A brittle layer can be deposited onto a flexible substrate, the brittle layer having a thickness on the flexible substrate. The flexible substrate can be bent to produce a plurality of gaps on the brittle material. A material can be deposited at the surface of the flexible substrate filling the gaps of the brittle layer. Then, the brittle layer can be etched from the flexible substrate using an etchant, a nano metal mesh formed by the material previously in the gaps. The disclosure also teaches a nano metal mesh made using this method.
Abstract:
Flexible electrical devices comprising electrode layers on softening polymers and methods of manufacturing such devices, including lift-off processes for forming electrodes on softening polymers, processes for forming devices with a patterned double softening polymer layer, and solder reflow processes for forming electrical contacts on softening polymers.
Abstract:
A method for preparing film patterns; firstly, a complementary film pattern (1) to a desired film pattern (201) is prepared on a substrate (3) with an erasable agent; secondly, a whole layer of film (2) is formed on the complementary film pattern (1); and thirdly, the desired film pattern (201) is obtained by removing the complementary film pattern (1). The preparation method can simplify the production process and reduce the production cost of the film patterns.
Abstract:
A semiconductor device has a structure including a substrate, a first insulating film formed over a part of a principal plane of the substrate, a conductive portion formed over a surface of the first insulating film, and a second insulating film which covers the principal plane of the substrate, the first insulating film, and the conductive portion and whose moisture resistance is higher than moisture resistance of the first insulating film. The first insulating film is placed between the substrate and the conductive portion to prevent the generation of parasitic capacitance. The first insulating film is covered with the second insulating film whose moisture resistance is higher than the moisture resistance of the first insulating film. The second insulating film prevents the first insulating film from absorbing moisture.
Abstract:
Provided is a method of fabricating a light-emitting diode (LED) device. A wafer is provided. The wafer has a sapphire substrate and a semiconductor layer formed on the sapphire substrate. The semiconductor layer contains a plurality of un-separated LED dies. A photo-sensitive layer is formed over the semiconductor layer. A photolithography process is performed to pattern the photo-sensitive layer into a plurality of patterned portions. The patterned portions are separated by a plurality of openings that are each substantially aligned with one of the LED dies. A metal material is formed in each of the openings. The wafer is radiated in a localized manner such that only portions of the wafer that are substantially aligned with the openings are radiated. The sapphire substrate is removed along with un-radiated portions of the semiconductor layer, thereby separating the plurality of LED dies into individual LED dies.
Abstract:
The present invention provides a reproducible preliminary in-situ oxide removal step for patterned self-assisted III-V semiconductor nanowire growth. Here “in-situ” means located within the same treatment environment or apparatus as the nanowire growth process, e.g. with a molecular beam epitaxy (MBE) apparatus or the like. Providing an in-situ process may prevent the formation of a thin oxide layer during transfer of the substrate into the nanowire growth apparatus.
Abstract:
A method for manufacturing a compound semiconductor device so as to separate a first substrate from a compound semiconductor laminated structure which includes forming a first compound semiconductor layer over a first substrate containing AlxGa1-xN (0≦x
Abstract translation:一种制造化合物半导体器件的方法,用于将第一衬底与化合物半导体层叠结构分离,所述化合物半导体层叠结构包括在包含Al x Ga 1-x N(0& n 1; x 1)的第一衬底上形成第一化合物半导体层并具有第一带隙 ; 在包含AlyInzGa1-y-zN(0
Abstract:
Provided is a method of fabricating a light-emitting diode (LED) device. A wafer is provided. The wafer has a sapphire substrate and a semiconductor layer formed on the sapphire substrate. The semiconductor layer contains a plurality of un-separated LED dies. A photo-sensitive layer is formed over the semiconductor layer. A photolithography process is performed to pattern the photo-sensitive layer into a plurality of patterned portions. The patterned portions are separated by a plurality of openings that are each substantially aligned with one of the LED dies. A metal material is formed in each of the openings. The wafer is radiated in a localized manner such that only portions of the wafer that are substantially aligned with the openings are radiated. The sapphire substrate is removed along with un-radiated portions of the semiconductor layer, thereby separating the plurality of LED dies into individual LED dies.
Abstract:
A method of depositing a non-continuous coating of a first material on a substrate, comprising: a) the formation of a mask on this substrate, by forming at least two mask layers, and etching of at least one cavity in these layers, this cavity having an outline such that a coating, deposited on the substrate, through the cavities of the mask, has at least one discontinuity over said outline of the cavity; b) the deposition of the first material on the substrate, through the cavities of the mask, the coating thus deposited having at least one discontinuity over the outline of said cavity; and c) the mask is removed.