摘要:
An implantable medical device lead includes an inner conductor coil comprising one or more generally cylindrically wound filars. The inner conductor coil is configured to have a first inductance value greater than or equal to 0.2 μH/inch when the inner conductor coil is subjected to a range of radio frequencies. The implantable medical device lead also includes a multi-filar outer coil comprising two or more generally cylindrically wound filars. The multi-filar outer coil is configured to have a second inductance value greater than or equal to 0.1 μH/inch when the multi-filar outer coil is subjected to the range of radio frequencies.
摘要:
Systems and methods for improving response of implantable leads to magnetic fields during medical procedures such as magnetic resonance imaging (MRI) are described. In various embodiments, the lead includes an inner conductor that is helically shaped and radially surrounded, at least in part, by one or more high-voltage conductors. The high-voltage conductor can be mechanically and/or electrically coupled, via a coupler, to the shocking coil. The pitch of the inner and/or outer conductor can be varied (e.g., continuously or at certain points) along the length of the lead. In some embodiments, the filar thickness, the pitch, and the mean coil diameter of the inner coil, the high voltage conductor coil, and the shock coil can be configured such that these coils have a desired inductance value when subjected to externally applied electromagnetic energy at radio frequencies commonly generated by MRI scanners (e.g., 40 MHz to 300 MHz).
摘要:
An implantable medical device lead includes an inner conductor coil comprising one or more generally cylindrically wound filars. The inner conductor coil is configured to have a first inductance value greater than or equal to 0.2 μH/inch when the inner conductor coil is subjected to a range of radio frequencies. The implantable medical device lead also includes a multi-filar outer coil comprising two or more generally cylindrically wound filars. The multi-filar outer coil is configured to have a second inductance value greater than or equal to 0.1 μH/inch when the multi-filar outer coil is subjected to the range of radio frequencies.
摘要:
Systems and methods for improving response of implantable leads to magnetic fields during medical procedures such as magnetic resonance imaging (MRI) are described. In various embodiments, the lead includes an inner conductor that is helically shaped and radially surrounded, at least in part, by one or more high-voltage conductors. The high-voltage conductor can be mechanically and/or electrically coupled, via a coupler, to the shocking coil. The pitch of the inner and/or outer conductor can be varied (e.g., continuously or at certain points) along the length of the lead. In some embodiments, the filar thickness, the pitch, and the mean coil diameter of the inner coil, the high voltage conductor coil, and the shock coil can be configured such that these coils have a desired inductance value when subjected to externally applied electromagnetic energy at radio frequencies commonly generated by MRI scanners (e.g., 40 MHz to 300 MHz).
摘要:
Medical device leads with magnetic shielding and methods of shielding medical device leads from magnetic fields during medical procedures such as magnetic resonance imaging (MRI) are described. An illustrative implantable medical device includes a lead including a lead conductor having a length and a helically coiled ribbon shield radially surrounding the lead conductor along at least a portion of the length of the lead. The ribbon shield can include one or more inner ribbon conductors and/or one or more outer ribbon conductors. The outer ribbon conductor can have a variable width (e.g., a necked-down configuration, an arrowhead configuration, or an undulating configuration) along the length of the lead. In some cases, the helically coiled ribbon has a variable pitch along the length of the lead that may be the same as or different from that of the lead conductor pitch.
摘要:
Medical device leads with magnetic shielding and methods of shielding medical device leads from magnetic fields during medical procedures such as magnetic resonance imaging (MRI) are described. An illustrative implantable medical device includes a lead including a lead conductor having a length and a helically coiled ribbon shield radially surrounding the lead conductor along at least a portion of the length of the lead. The ribbon shield can include one or more inner ribbon conductors and/or one or more outer ribbon conductors. The outer ribbon conductor can have a variable width (e.g., a necked-down configuration, an arrowhead configuration, or an undulating configuration) along the length of the lead. In some cases, the helically coiled ribbon has a variable pitch along the length of the lead that may be the same as or different from that of the lead conductor pitch.
摘要:
Various embodiments relating to MRI safe, multi-polar active fixation stimulation leads with co-radial construction are disclosed. Some embodiments, allow the use of the generally smaller diameter co-radially constructed body (coated wires) to construct an active fixation lead, with an extendable/retractable fixation mechanism. Some embodiments use a connector assembly with an inner terminal ring, a terminal pin partially rotatably positioned within the annular inner terminal ring, and one or more resilient C-clips disposed within circumferential recesses. The resilient C-clips mechanically and electrically couple the inner terminal ring and the terminal ring while substantially limiting relative longitudinal translation of the terminal pin. In some embodiments, the connector assembly can be connected to an electrically inactive torque tube disposed longitudinally within the flexible body of the lead such that rotation of the terminal pin relative to the lead body causes rotation and longitudinal translation of a fixation helix relative to the body.
摘要:
Various embodiments relating to MRI safe, multi-polar active fixation stimulation leads with co-radial construction are disclosed. Some embodiments, allow the use of the generally smaller diameter co-radially constructed body (coated wires) to construct an active fixation lead, with an extendable/retractable fixation mechanism. Some embodiments use a connector assembly with an inner terminal ring, a terminal pin partially rotatably positioned within the annular inner terminal ring, and one or more resilient C-clips disposed within circumferential recesses. The resilient C-clips mechanically and electrically couple the inner terminal ring and the terminal ring while substantially limiting relative longitudinal translation of the terminal pin. In some embodiments, the connector assembly can be connected to an electrically inactive torque tube disposed longitudinally within the flexible body of the lead such that rotation of the terminal pin relative to the lead body causes rotation and longitudinal translation of a fixation helix relative to the body.
摘要:
An implantable medical device lead includes an inner conductor assembly coupled to a first electrode at a distal end of the inner conductor assembly and an outer conductive coil extending coaxially with the inner conductor assembly and coupled to a second electrode. The inner conductor assembly includes one or more filars arranged in a plurality of serially connected current suppression modules. The inner conductor assembly is configured to improve torque transmission.
摘要:
An implantable medical lead exhibits reduced heating under MRI conditions. The lead includes a multi-layer coil conductor including an inner coil layer, a middle coil layer disposed around the inner coil layer, and an outer coil layer disposed around the middle coil layer. Each of the coil layers is characterized by one or more of a filar thickness, a coil pitch, or a coil diameter configured such that the coil conductor exhibits a high inductance when exposed to MRI radiation. Each of the coil layers is electrically connected to the other coil layers to provide parallel conductive paths resulting in a coil conductor resistance suitable for defibrillation lead applications.