摘要:
A disk drive write head (10) having a bottom pole (60), a first insulation layer (64) formed on the bottom pole (60), a coil (38) formed on the first insulation layer (64), a second insulation layer (66) formed on the coil (38), a write gap layer (76) formed on the second insulation layer (66), and a top pole (12) formed on the write gap layer (76), where the top pole (12) is substantially flat.A second embodiment (100) is described which is produced by a damascene process.
摘要:
In one general embodiment, a magnetic head includes a touch-down pad, comprising at least one shielding element positioned between a leading edge of a main magnetic pole and a trailing edge of a lower return pole; an embedded contact sensor (ECS) in an electrically isolating layer, the ECS positioned near an ABS side of the magnetic head and between the leading edge of the main magnetic pole and the trailing edge of the lower return pole; and a first thermal fly-height control (TFC) element positioned away from the ABS side of the magnetic head. Additional systems and methods are also presented.
摘要:
In one general embodiment, a magnetic head includes a touch-down pad, comprising at least one shielding element positioned between a leading edge of a main magnetic pole and a trailing edge of a lower return pole; an embedded contact sensor (ECS) in an electrically isolating layer, the ECS positioned near an ABS side of the magnetic head and between the leading edge of the main magnetic pole and the trailing edge of the lower return pole; and a first thermal fly-height control (TFC) element positioned away from the ABS side of the magnetic head. Additional systems and methods are also presented.
摘要:
A T-shaped pole tip portion of an upper pole of a write element for a magnetic disk drive is provided. One end of the pole tip portion, constituting the bottom of the “T,” forms a narrow nose segment at an air bearing surface, while a wing segment at the opposite end of the pole tip portion constitutes the cross-bar top of the “T.” A transition segment extends between the nose segment and the wing segment. A yoke portion of the upper pole includes a surface that is parallel to the air bearing surface and recessed therefrom by a P3R depth. The transition segment does not widen significantly until after the P3R depth, accordingly, the wing segment is recessed from the air bearing surface by more than the P3R depth.
摘要:
A disk drive write head having in consecutive layers a bottom pole, a write gap layer, a first insulation layer, a coil, a second insulation layer having an insulation layer boundary, and a top pole on the second insulation layer. The top pole includes a main body portion and a nose portion and has a flare line at the location where the nose portion expands to become the main body portion. The top pole further includes a curved contour portion having a contour boundary, a tip which terminates in an air bearing surface, and a flat portion on the top surface of the nose extending between the tip and the contour boundary. The insulation layer boundary is recessed from the air bearing surface such that the top pole contour boundary lies substantially close to the flare line, thus producing a top pole top surface which is substantially flat.
摘要:
Test methods and components are disclosed for testing the quality of a fabrication process used to form read elements in magnetic heads. A wafer is populated with one or more test components along with magnetic heads. The test components are formed by the same or similar fabrication processes as the read elements, but do not include a conductive MR sensor between the test leads. By measuring the resistance of the test components, the formation of parasitic shunts can be identified in the test components, which may indicate the formation of parasitic shunts in the read elements. Thus, the quality of the fabrication process in forming read elements in magnetic head may be determined.
摘要:
Test methods and components are disclosed for testing resistances of magnetoresistance (MR) sensors in read elements. Test components are fabricated on a wafer with a first test lead, a test MR sensor, and a second test lead. The test leads and test MR sensor are fabricated with similar processes as first shields, MR sensors, and second shields of read elements on tie wafer. However, the test MR sensor is fabricated with an area that is larger than areas of the MR sensors in the read elements. The larger area of the test MR sensor causes the resistance of the test MR sensor to be insignificant compared to the lead resistance. Thus, a resistance measurement of the test component represents the lead resistance of a read element. An accurate resistance measurement of an MR sensor in a read element may then be determined by subtracting the lead resistance.
摘要:
Tunneling magnetoresistive (TMR) electrical lapping guides (ELG) are disclosed for use in wafer fabrication of magnetic sensing devices, such as magnetic recording heads using TMR read elements. A TMR ELG includes a TMR stack comprising a first conductive layer, a barrier layer, and a second conductive layer of TMR material. The TMR ELG also includes a first lead and a second lead that connect to conductive pads used for applying a sense current to the TMR ELG in a current in plane (CIP) fashion. The first lead contacts one side of the TMR stack so that the first lead contacts both the first conductive layer and the second conductive layer of the TMR stack. The second lead contacts the other side of the TMR stack so that the second lead contacts both the first conductive layer and the second conductive layer of the TMR stack.
摘要:
A disk drive head slider for a magnetic disk drive is provided. The head slider includes a tunnel magnetic resistance device for reading data on a magnetic disk and a dedicated noncorrosive smear detector for measuring resistance wherein the resistance corresponds to a level of smear associated with the head slider.
摘要:
Test methods and components are disclosed for testing the quality of a fabrication process used to form read elements in magnetic heads. A wafer is populated with one or more test components along with magnetic heads. The test components are formed by the same or similar fabrication processes as the read elements, but do not include a conductive MR sensor between the test leads. By measuring the resistance of the test components, the formation of parasitic shunts can be identified in the test components, which may indicate the formation of parasitic shunts in the read elements. Thus, the quality of the fabrication process in forming read elements in magnetic head may be determined.