摘要:
In a magnetic resonance imaging apparatus including a pulse sequence control unit for controlling a pulse sequence to acquire echoes while both a radio frequency magnetic field and a gradient magnetic field are applied to an object under examination present in a static magnetic field; and an image reconstructing unit for reconstructing an image based upon the acquired echoes, the pulse sequence control unit is comprised of a spatial resolution control unit for setting spatial resolution A along a readout gradient magnetic field direction of the reconstructed image; and a gradient magnetic field strength control unit for applying such a readout gradient magnetic field that spatial resolution B determined by a strength of the readout gradient magnetic field and a sampling period becomes coarser than the spatial resolution A. The image reconstructing unit reconstructs an image while a minimum unit of the spatial resolution A is set as a width of one pixel of a reconstructed image along a readout direction.
摘要:
In the inspection system using nuclear magnetic resonance comprising magnetic field generators such as a static magnetic field, a gradient magnetic field, and an RF magnetic field, an RF probe for detecting an NMR signal from a subject, and a calculator for operating a detected signal by the RF probe, a RF probe for detection comprises a plurality of coils arranged in the predetermined direction and includes a plurality of switching elements and the inspection system selects two or more coils from the plurality of coils for each measurement of NMR signals, turns the switching elements connected to the selected coils ON, turns the switching elements connected to coils other than the selected coils OFF, changes a combination of two or more coils for each measurement of NMR signals, and changes the sensitivity distribution of the RF probe in the predetermined direction according to the Wavelet basis function for each measurement of NMR signals.
摘要:
The present invention provides a magnetic resonance imaging system capable of performing spectrum measurement even when a magnetic resonant frequency changes during MRS measurement. A time-varying rate of a water magnetic resonant frequency is measured in advance before the MRS measurement. The amount of change in water magnetic resonant frequency during the MRS measurement is predicted from the measured time-varying rate. With the predicted value as the reference, a transmission frequency of an RF magnetic field irradiated in a signal suppression pulse sequence, a transmission frequency of an RF magnetic field for excitation and inversion and a received frequency at the detection of a magnetic resonance signal in a sequence of the MRS measurement are respectively set. A high-precision spectrum measurement is hence enabled.
摘要:
A magnetic resonance imaging system capable of conducting spectroscopic imaging with an improved SNR without degrading the spatial resolution includes edge-preserving filter processing means for spectroscopic imaging. The edge-preserving filter processing means executes processing including the steps of calculating spectral similarity in spatial neighborhoods (spatially neighboring voxels) at each voxel in spectroscopic imaging data, calculating a spectral weight according to the spectral similarity, and conducting weighted smoothing for compounding spectra of spatial neighborhoods (spatially neighboring voxels) according to the spectral weight.
摘要:
The present invention provides a magnetic resonance imaging system capable of performing spectrum measurement even when a magnetic resonant frequency changes during MRS measurement. A time-varying rate of a water magnetic resonant frequency is measured in advance before the MRS measurement. The amount of change in water magnetic resonant frequency during the MRS measurement is predicted from the measured time-varying rate. With the predicted value as the reference, a transmission frequency of an RF magnetic field irradiated in a signal suppression pulse sequence, a transmission frequency of an RF magnetic field for excitation and inversion and a received frequency at the detection of a magnetic resonance signal in a sequence of the MRS measurement are respectively set. A high-precision spectrum measurement is hence enabled.
摘要:
A magnetic resonance imaging system capable of conducting spectroscopic imaging with an improved SNR without degrading the spatial resolution includes edge-preserving filter processing means for spectroscopic imaging. The edge-preserving filter processing means executes processing including the steps of calculating spectral similarity in spatial neighborhoods (spatially neighboring voxels) at each voxel in spectroscopic imaging data, calculating a spectral weight according to the spectral similarity, and conducting weighted smoothing for compounding spectra of spatial neighborhoods (spatially neighboring voxels) according to the spectral weight.
摘要:
The present invention provides a magnetic resonance imaging system capable of performing spectrum measurement even when a magnetic resonant frequency changes during MRS measurement. A time-varying rate of a water magnetic resonant frequency is measured in advance before the MRS measurement. The amount of change in water magnetic resonant frequency during the MRS measurement is predicted from the measured time-varying rate. With the predicted value as the reference, a transmission frequency of an RF magnetic field irradiated in a signal suppression pulse sequence, a transmission frequency of an RF magnetic field for excitation and inversion and a received frequency at the detection of a magnetic resonance signal in a sequence of the MRS measurement are respectively set. A high-precision spectrum measurement is hence enabled.
摘要:
The present invention provides a magnetic resonance imaging system capable of performing spectrum measurement even when a magnetic resonant frequency changes during MRS measurement. A time-varying rate of a water magnetic resonant frequency is measured in advance before the MRS measurement. The amount of change in water magnetic resonant frequency during the MRS measurement is predicted from the measured time-varying rate. With the predicted value as the reference, a transmission frequency of an RF magnetic field irradiated in a signal suppression pulse sequence, a transmission frequency of an RF magnetic field for excitation and inversion and a received frequency at the detection of a magnetic resonance signal in a sequence of the MRS measurement are respectively set. A high-precision spectrum measurement is hence enabled.
摘要:
Provided is a magnetic resonance imager capable of efficiently suppressing artifacts in radial scanning that is short of the number of echoes.Part of unmeasured echoes is measured as a reference echo. An estimation coefficient is calculated using echoes adjoining the reference echo, and used to estimate the unmeasured echoes.
摘要:
The MRI apparatus of the present invention executes a non-imaging mode 501 for obtaining a steady state of magnetization and an imaging mode 502 for measuring echoes for images. In the non-imaging mode 501 and the imaging mode 502, imaging is performed by using a GrE type pulse sequence. In the imaging, RF pulses are irradiated while flip angle of nuclear magnetization in the imaging mode 502 is changed in a range of values not larger than a certain value determined by flip angle of nuclear magnetization used in the non-imaging mode 502 is irradiated. This certain value is, for example, the maximum value of flip angle of nuclear magnetization used in the non-imaging mode, or flip angle provided by an RF pulse used at the end of the non-imaging mode. SAR observed with use of a GrE type pulse sequence can be thereby reduced without degrading image contrast, and thus influence on human bodies can be reduced.