摘要:
Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field exceeding 10 kOe (oersted), while also modified to suppress remanent magnetic fields occurring immediately after writing operation. In a perpendicular magnetic head comprising a main pole, a return path for supplying a magnetic flux to that main pole, and an conductive coil for excitation of the main pole and return path, the main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer, the low saturation flux density layer has a thickness within 0.5 to 5 nanometers, the high saturation flux density layer has a thickness from 10 to 50 nanometers for suppressing remanent magnetization and preventing erasing after writing by utilizing a closed magnetic domain structure in the pole.
摘要:
Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field, while also being modified to suppress remanent magnetic fields occurring immediately after writing operation. A return path is provided for supplying a magnetic flux to the main pole, and an conductive coil for excitation of the main pole and return path. The main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer. The low saturation flux density layer and the high saturation flux density suppress remanent magnetization and prevent erasing after writing by utilizing a closed magnetic domain structure in the pole.
摘要:
Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field, while also being modified to suppress remanent magnetic fields occurring immediately after writing operation. A return path is provided for supplying a magnetic flux to the main pole, and an conductive coil for excitation of the main pole and return path. The main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer. The low saturation flux density layer and the high saturation flux density suppress remanent magnetization and prevent erasing after writing by utilizing a closed magnetic domain structure in the pole.
摘要:
Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field, while also being modified to suppress remanent magnetic fields occurring immediately after writing operation. A return path is provided for supplying a magnetic flux to the main pole, and an conductive coil for excitation of the main pole and return path. The main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer. The low saturation flux density layer and the high saturation flux density suppress remanent magnetization and prevent erasing after writing by utilizing a closed magnetic domain structure in the pole.
摘要:
Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field exceeding 10 kOe while suppressing remanent magnetic fields occurring immediately after write operations. The perpendicular magnetic head comprises a main pole, a return path for supplying a magnetic flux to that main pole, and a conductive coil for excitation of the main pole and return path. The main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer. The low saturation flux density layer has a thickness within 0.5 to 5 nanometers, and The high saturation flux density layer has a thickness from 10 to 50.
摘要:
Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field, while also being modified to suppress remanent magnetic fields occurring immediately after writing operation. A return path is provided for supplying a magnetic flux to the main pole, and an conductive coil for excitation of the main pole and return path. The main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer. The low saturation flux density layer and the high saturation flux density suppress remanent magnetization and prevent erasing after writing by utilizing a closed magnetic domain structure in the pole.
摘要:
The invention provides a magnetic head for perpendicular recording capable of recording with high linear recording density and high track density, and a magnetic disk drive incorporating the same. In order to achieve this, one or more sides of the main pole of the magnetic head for perpendicular recording except for the trailing side are formed in a taper with an appropriate angle against the tip surface of the main pole, and the yoke whose widest principal plane is in parallel to the tip surface is provided on the bottom of the main pole.Thereby, the invention achieves the magnetic head for perpendicular recording that generates a sufficiently high magnetic field, and assumes a sharp gradient of magnetic field on the trailing side. By incorporating this magnetic head, a magnetic disk drive capable of handling high linear recording density can be produced.
摘要:
A magnetic head includes a main pole having a first portion with a length (W1) in a cross-track direction which continuously increases from a leading edge side to a trailing edge side, a second portion formed on a trailing edge side of the first portion, and a third portion formed on a trailing edge side of the second portion. A length (W2) in the cross-track direction of a boundary line between the second portion and the third portion is longer than W1, and a length (W3) in the cross-track direction of a trailing edge of a third portion is substantially equal to W2.
摘要:
A magnetic head having at least a main pole having a profile on a magnetic head air bearing surface composed of a first portion having a length in a cross-track direction which continuously increases from a leading edge to a trailing edge, and a second portion located on the side of the trailing edge of the first portion. A length of the second portion in the cross-track direction at the trailing edge is substantially equal to a length in the cross-track direction at the point of contact between the first and second portions. A rate of change in the length of the second portion in the cross-track direction from the leading edge to the trailing edge is different from a rate of increase in the length of the first portion in the cross-track direction.
摘要:
A single-pole type magnetic head for perpendicular recording which reduces the amount of side writing even in the presence of a yaw angle and prevents the effective track width from decreasing, and a magnetic recording disk apparatus using the same. A main pole is composed of at least two portions where the width of the first portion continuously increases from the upstream side to the downstream side in the medium moving direction and the width of the second portion is the same as the width of the first portion's downstream edge in the medium moving direction and is constant from the upstream side to the downstream side in the medium moving direction. This prevents the recording magnetic field strength from decreasing at the track edge and increases the effective track width while suppressing side writing, thereby realizing a magnetic recording disk apparatus with a high track density.