Abstract:
A beam irradiation device includes: a laser light source for emitting laser light; an actuator which scans a targeted area with the laser light; a servo optical system which changes a propagating direction of servo light in response to driving of the actuator; a photodetector which receives the servo light to output a signal depending on a light receiving position of the servo light; an actuator controlling section which controls the actuator based on the signal to be outputted from the photodetector; and a laser controlling section which controls the laser light source based on the signal to be outputted from the photodetector. The laser controlling section controls the laser light source to emit the laser light in a pulse manner at a timing when the light receiving position of the servo light coincides with a predetermined targeted position.
Abstract:
A beam irradiation device includes: a laser light source for emitting laser light; an actuator which scans a targeted area with the laser light; a servo optical system which changes a propagating direction of servo light in response to driving of the actuator; a photodetector which receives the servo light to output a signal depending on a light receiving position of the servo light; an actuator controlling section which controls the actuator based on the signal to be outputted from the photodetector; and a laser controlling section which controls the laser light source based on the signal to be outputted from the photodetector. The laser controlling section controls the laser light source to emit the laser light in a pulse manner at a timing when the light receiving position of the servo light coincides with a predetermined targeted position.
Abstract:
A beam irradiation device includes a photodetector which receives servo light; a signal processing section which generates a position detection signal based on a detection signal from the photodetector; and a control section which controls the laser light source and the actuator for beam scanning based on the position detection signal. The signal processing section performs a sampling operation with respect to the detection signal from the photodetector at two consecutive sampling timings. The signal processing section includes an A/D converting section which converts a difference between two sampling values obtained by the sampling operation into a digital signal, and a computing section which computes the position detection signal based on the digital signal from the A/D converting section.
Abstract:
A beam irradiation device includes a photodetector which receives servo light; a signal processing section which generates a position detection signal based on a detection signal from the photodetector; and a control section which controls the laser light source and the actuator for beam scanning based on the position detection signal. The signal processing section performs a sampling operation with respect to the detection signal from the photodetector at two consecutive sampling timings. The signal processing section includes an A/D converting section which converts a difference between two sampling values obtained by the sampling operation into a digital signal, and a computing section which computes the position detection signal based on the digital signal from the A/D converting section.
Abstract:
A beam irradiation device includes a photodetector which receives servo light and outputs a detection signal depending on a light receiving position of the servo light, and a signal processing section which obtains the light receiving position based on the detection signal. In the above arrangement, the signal processing section has an A/D conversion circuit which converts the detection signal into a digital signal, and an error signal adjusting circuit which converts an error component signal to be outputted from the photodetector when the photodetector is not irradiated by the servo light, into a signal within a processable range of the A/D conversion circuit, and supplies the converted signal to the A/D conversion circuit. A first digital signal derived from the detection signal is corrected with a second digital signal derived from the error component signal.
Abstract:
A beam irradiation device includes a photodetector which receives servo light and outputs a detection signal depending on a light receiving position of the servo light, and a signal processing section which obtains the light receiving position based on the detection signal. In the above arrangement, the signal processing section has an A/D conversion circuit which converts the detection signal into a digital signal, and an error signal adjusting circuit which converts an error component signal to be outputted from the photodetector when the photodetector is not irradiated by the servo light, into a signal within a processable range of the A/D conversion circuit, and supplies the converted signal to the A/D conversion circuit. A first digital signal derived from the detection signal is corrected with a second digital signal derived from the error component signal.
Abstract:
A laser radar according to an embodiment of the invention includes a beam irradiation head which emits a laser beam and a control circuit which controls the beam irradiation head to perform scan in a two-dimensional direction with the laser beam. In the laser radar, the beam irradiation head includes a laser beam source; a mirror to which the laser beam emitted from the laser beam source is incident; and a driving mechanism which rotates the mirror in first and second directions about a first rotating axis and a second rotating axis perpendicular to the first rotating axis respectively. The control circuit controls the rotation of the mirror in the first direction and the second direction such that a scan region of the laser beam becomes a rectangular shape.
Abstract:
The present invention provides smooth and adequate recording/reproducing on a recording medium employing a biodegradable material as a substrate material. The present invention relates to storing on a recording medium, information, structure, or the like indicating that a substrate is formed of a biodegradable material. When the present invention is applied to CD, CD-R, and CD-RW, identification information indicating a substrate formed of a biodegradable material is included in a free area of TOC data in a lead-in area shown in FIG. 4. An optical disc apparatus reads the identification information to identify whether or not a disc loaded into the apparatus has a substrate of a biodegradable material. When the loaded disc has a substrate of a biodegradable material, the optical disc apparatus: measures a temperature inside a drive; stops a recording/reproducing operation on the disc when the temperature approaches a glass transition temperature of a substrate material; and ejects the disc to outside of the apparatus.
Abstract:
A laser radar according to an embodiment of the invention includes a beam irradiation head which emits a laser beam and a control circuit which controls the beam irradiation head to perform scan in a two-dimensional direction with the laser beam. In the laser radar, the beam irradiation head includes a laser beam source; a mirror to which the laser beam emitted from the laser beam source is incident; and a driving mechanism which rotates the mirror in first and second directions about a first rotating axis and a second rotating axis perpendicular to the first rotating axis respectively. The control circuit controls the rotation of the mirror in the first direction and the second direction such that a scan region of the laser beam becomes a rectangular shape.
Abstract:
A beam irradiation device includes: a first light source for emitting laser light; an actuator for moving a scanning section for receiving the laser light to scan a target area with the laser light; a second light source movable with the scanning section and adapted for emitting diffused light; a light receiving position detecting device for receiving the diffused light to output a signal depending on a position of receiving the diffused light; and a light projecting element, disposed at a position closer to the light receiving position detecting device with respect to an intermediate position between the second light source and the light receiving position detecting device, for projecting an emission position to be defined by the second light source on the light receiving position detecting device via a predetermined projection area.