摘要:
It in an object to acquire a high-precision polarization image. Provided is a polarization microscope comprising an illumination optical system 3 including a light source, a polarizer for converting a polarization state of illumination light from the light source, and a condenser lens for condensing the illumination light transmitted through the polarizer onto a specimen; an image-acquisition optical system including an objective lens for collecting observation light from the specimen, an analyzer for converting a polarization state of the observation light collected by the objective lens, and an image-acquisition device for acquiring the observation light transmitted through the analyzer; an observation-light angle correcting element for correcting changes in rotation angle of a polarization plane of the observation light in the image-acquisition optical system; and an observation-light phase-difference correcting element for correcting changes in phase difference between P-polarization and S-polarization of the observation light in the image-acquisition optical system, wherein amounts of correction of these correcting elements vary in directions intersecting an optical axis.
摘要:
Time lapse observation method includes: before a process to obtain a first time lapse image, capturing an image of a reference area on a sample being a partial area of a target area or an area in a vicinity of the target area being a smaller area than the target area to obtain a reference image; storing a position of a capturing area in capturing the reference image as a reference position; before a process to obtain the time lapse image performed, setting a position of the capturing area sequentially at different positions in the optical axis direction of an objective including the reference position and capturing an image at each of the positions to obtain comparison target images; and matching the capturing area with the target area, based on a comparison result of the reference image and the comparison target images.
摘要:
A light intensity measuring unit for measuring an intensity of light emitted from a microscope includes an aperture stop, a field stop, at least one measurement lens arranged between the aperture stop and the field stop, and an interface for attachment to a microscope. The aperture stop is positioned on or close to a back focal plane of the at least one measurement lens. The field stop is positioned on or close to a front focal plane of the at least one measurement lens.