摘要:
There is provided a high-performance magnetic core with a high &mgr;′Qf-value for an RF accelerating. The strip wound magnetic core has a thin strip of nanocrystalline soft magnetic alloy, whose bcc solid solution with an average grain size less than 100 nm has a volume fraction more than 50% of the whole structure of the alloy, and around which an interlayer insulation film at least on one side thereof. A gap is formed in at least a part of a magnetic path of the magnetic core. Stack cores formed by arranging in series a plurality of the magnetic cores are oppositely installed via a high-voltage gap, making it possible to provide an excellent RF accelerating cavity.
摘要:
A method for winding a rapidly quenched thin metal ribbon has the steps of (1) ejecting a molten metal onto a rotating cooling roll to rapidly solidify the molten metal to form a thin metal ribbon, (2) peeling the thin metal ribbon from the cooling roll to let the thin metal ribbon to freely move from the cooling roll, and (3) bringing a rotating winding roll having an adhesive thereon into contact with the freely moving thin metal ribbon at an intermediate point thereof, so that the thin metal ribbon is wound around the winding roll with an excess portion of the thin metal ribbon forward of the intermediate point cut off.
摘要:
The present invention provides a method for producing a Fe-based amorphous alloy ribbon comprising the steps of: ejecting a molten Fe-based alloy containing 10 atomic % or less of B onto a cooling roll to solidify the molten Fe-based alloy; and peeling the solidified Fe-based alloy from the cooling roll when the solidified Fe-based alloy has a temperature of 100 to 300° C. A Fe-based amorphous alloy ribbon having no crystalline phase is stably, continuously produced without breakage by this method.
摘要:
A resonator for use in a marker in an electronic article surveillance system having an amorphous alloy ribbon having a width of 7 mm or less and a thickness of 18 μm to 23 μm. The amorphous alloy ribbon preferably has an average surface roughness Ra of 0.45 μm or less.
摘要:
An amorphous alloy ribbon free from embrittlement and crystallization and having excellent surface conditions and shape in edge portions is produced by (a) preparing an alloy melt having a composition comprising 13 atomic % or less of B and 15 atomic % or less of at least one selected from the group consisting of transition elements of Groups 4A, 5A and 6A, the balance being substantially Fe; (b) ejecting the alloy melt at a temperature from the melting point of the alloy +50° C. to the melting point of the alloy +250° C. through a nozzle onto the cooling roll rotating at a peripheral speed of 35 m/second or less, a distance between a tip end of the nozzle and the cooling roll being 200 &mgr;m or less; (c) starting to supply a gas based on CO2 to the alloy melt after the surface temperature of the cooling roll has become substantially constant; and (d) grinding the cooling roll while supplying the gas based on CO2.
摘要:
A composite magnetic member formed of a single material having a ferromagnetic section with high soft magnetism and a non-magnetic or the like section with sufficiently low magnetic (feebly magnetized or non-magnetic) and sufficient low MS temperature and a process for producing the member are provided. A composite magnetic member made of a single material of martensitic stainless steel including Ni having two sections of a ferromagnetic section having maximum permeability not less than 200 and coercive force not more than 2000 A/m and a feebly magnetized section having permeability not more than 2 and MS temperature not more than -30.degree. C. A process for producing a composite magnetic member, comprising the steps of locally heating a single material of martensitic stainless steel having particular composition including Ni and having ferrite and carbide, at temperature of more than austenite transformation temperature, and rapidly quenching it so that austenite structure is formed in the heated and quenched section which structure has MS temperature not more than -30.degree. C.