摘要:
Methods of fabricating a free standing thin film of shape memory alloy material, and products made by the methods. A sacrificial layer of a metallic material is deposited onto the surface of a substrate. Then an amorphous shape memory alloy is sputter deposited onto the outer surface of the sacrificial layer. The sacrificial layer is etched away, leaving the thin film free standing, that is separated from the substrate. The thin film is annealed by heating into a crystalline state, with the annealing step carried out either after the film has been separated from the substrate, or while remaining attached to it.
摘要:
A molten alloy having an amorphous forming ability is pressure-solidified at a pressure exceeding one atmospheric pressure to eliminate casting defects. The cooling rate during the solidification is adjusted to disperse fine crystals having a mean crystal grain diameter of 1 nm to 50 &mgr;m and a volume percentage of 5 to 40% in an amorphous alloy ingot. In this way, a uniform residual compressive stress is imparted in the amorphous alloy ingot. Furthermore, the amorphous ingot produced by this method can be strengthened by heating it at a constant temperature rising rate to infiltrate at least one of boron, carbon, oxygen, nitrogen and fluorine from the surface of the amorphous alloy ingot in a supercooled liquid state before crystallization, to thereby precipitate a high melting point compound thereof with an element forming the amorphous alloy within the alloy ingot so as to strength the alloy.
摘要:
Preformed articles of an amorphous metal foil which are particularly adapted to be used in the manufacture of an assembly having brazed joints, especially a heat exchanger. Methods for the manufacture of a heat exchanger or other assembly having brazed joints, which method includes the process step of providing a preformed article formed of a brazing foil composition of an amorphous metal alloy in contact with one or more elements of said heat exchanger or other assembly.
摘要:
An amorphous alloy ribbon free from embrittlement and crystallization and having excellent surface conditions and shape in edge portions is produced by (a) preparing an alloy melt having a composition comprising 13 atomic % or less of B and 15 atomic % or less of at least one selected from the group consisting of transition elements of Groups 4A, 5A and 6A, the balance being substantially Fe; (b) ejecting the alloy melt at a temperature from the melting point of the alloy +50° C. to the melting point of the alloy +250° C. through a nozzle onto the cooling roll rotating at a peripheral speed of 35 m/second or less, a distance between a tip end of the nozzle and the cooling roll being 200 &mgr;m or less; (c) starting to supply a gas based on CO2 to the alloy melt after the surface temperature of the cooling roll has become substantially constant; and (d) grinding the cooling roll while supplying the gas based on CO2.
摘要:
An electrode composition that includes an electrode material consisting essentially of at least one electrochemically inactive elemental metal and at least one electrochemically active elemental metal in the form of an amorphous mixture at ambient temperature. The mixture remains amorphous when the electrode composition is incorporated into a lithium battery and cycled through at least one full charge-discharge cycle at ambient temperature.
摘要:
A zirconium system amorphous alloy having a composition expressed by a general formula Zr100-X-Y-a-b Tix Aly Cua Nib wherein a, b, X, and Y in the formula represent atomic percentage, and fulfill X 5, Y
摘要翻译:具有由通式Zr100-XYab Tix Aly Cua Nib表示的组成的锆系非晶合金,其中式中的a,b,X和Y表示原子百分比,并且满足X <10,Y> 5,Y < - ( 1/2)X + 35 / 2,15 <= a <= 25和5 <= b <= 15,锆系非晶合金具有大于合金体积的50体积%的非晶相。
摘要:
A manufacturing process for casting amorphous metallic parts separates the filling and quenching steps of the casting process in time. The mold is heated to an elevated casting temperature at which the metallic alloy has high fluidity. The alloy fills the mold at the casting temperature, thereby enabling the alloy to effectively fill the spaces of the mold. The mold and the alloy are then quenched together, the quenching occurring before the onset of crystallization in the alloy. With this process, compared to conventional techniques, amorphous metallic parts with higher aspect ratios can be prepared.
摘要:
A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr—Ti—Cu—Ni—Be alloy bulk glass forming system with added niobium.
摘要:
A new metallic glass is formed by adding special additives to a metallic glass matrix; the additives having ductile properties to form as dendrites in the metallic glass. The additives distribute the shear lines in the metallic glass, allowing it to plastically deform more than previous materials.
摘要:
Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.