摘要:
A tunneling magnetic detecting element includes an insulating barrier layer having a layered structure including a Ti—O sublayer and a Ta—O sublayer. The Ta concentration in the insulating barrier layer is set to be more than 0 at % but not more than about 7 at % with respect to a total of 100 at % of Ti and Ta constituting the insulating barrier layer.
摘要:
A tunneling magnetic sensor includes a platinum layer between a pinned magnetic layer and an insulating barrier layer. The platinum layer can probably vary the barrier height (potential height) and barrier width (potential width) of the insulating barrier layer to reduce the absolute value of VCR, thus providing higher operating stability than known tunneling magnetic sensors. In addition, the insulating barrier layer can achieve increased flatness at its bottom interface (where the insulating barrier layer starts to be formed). The tunneling magnetic sensor can therefore provide a higher rate of resistance change (ΔR/R) at low RA than known tunneling magnetic sensors.
摘要翻译:隧道磁传感器包括在钉扎磁性层和绝缘阻挡层之间的铂层。 铂层可能改变绝缘阻挡层的势垒高度(势高)和势垒宽度(电位宽度),以降低VCR的绝对值,从而提供比已知的隧道磁传感器更高的操作稳定性。 此外,绝缘阻挡层可以在其底部界面(其中开始形成绝缘阻挡层)时实现增加的平坦度。 因此,隧道磁传感器可以在低RA处提供比已知的隧道磁传感器更高的电阻变化率(&Dgr; R / R)。
摘要:
A tunneling magnetic sensing element includes a pinned magnetic layer with a magnetization direction that is pinned in one direction, an insulating barrier layer, and a free magnetic layer with a magnetization direction that varies in response to an external magnetic field. The insulating barrier layer comprises magnesium (Mg), and a first protective layer composed of Mg is disposed on the free magnetic layer.
摘要:
A tunneling magnetic detecting element includes an insulating barrier layer having a layered structure including a Ti—O sublayer and a Ta—O sublayer. The Ta concentration in the insulating barrier layer is set to be more than 0 at % but not more than about 7 at % with respect to a total of 100 at % of Ti and Ta constituting the insulating barrier layer.
摘要:
A tunneling magnetic sensing element including an Mg—O insulating barrier which can maintain favorable soft-magnetic properties of a free magnetic layer and can have a high resistance change ratio (ΔR/R) compared to known tunnel magnetic sensing elements is disclosed, and a method of manufacturing such a tunneling magnetic sensing element is also discloded. An enhance layer (second magnetic layer) composed of Co100-XFeX having a Fe composition ratio X of about 30 to 100 at % is disposed on the Mg—O insulating barrier. With this, the magnetostriction λ of the free magnetic layer can be reduced and the resistance change ratio (ΔR/R) can be increased.
摘要:
A tunneling magnetic sensing element includes a pinned magnetic layer whose magnetization direction is pinned in one direction, an insulating barrier layer disposed on the pinned magnetic layer, a free magnetic layer whose magnetization direction varies in response to an external magnetic field disposed on the insulating barrier layer, and a first protective layer composed of iridium-manganese (IrMn) disposed on the free magnetic layer. Consequently, a high rate of change in resistance is obtained and the magnetostriction of the free magnetic layer is low, compared with a tunneling magnetic sensing element which is not provided with a first protective layer.
摘要:
A tunnel-type magnetic detecting element is provided. The tunnel-type magnetic detecting element includes a first ferromagnetic layer; an insulating barrier layer; and a second ferromagnetic layer. The first ferromagnetic layer, the second ferromagnetic layer, or both have a Heusler alloy layer contacting the insulating barrier layer. Equivalent planes represented by {110} surfaces, are preferentially oriented parallel to a film surface in the Heusler alloy layer. The insulating barrier layer is formed of MgO and the equivalent crystal planes represented by the {100} surfaces or the equivalent crystal planes represented by the {110} surfaces are oriented parallel to the film surface.
摘要:
A tunneling magnetic sensor includes a pinned magnetic layer of which the magnetization is pinned in one direction, an insulating barrier layer, and a free magnetic layer of which the magnetization is varied by an external magnetic field, these layers being arranged in that order from the bottom. A first protective layer made of magnesium (Mg) is disposed on the free magnetic layer. The tunneling magnetic sensor has a larger change in reluctance as compared to conventional magnetic sensors including no first protective layers or including first protective layers made of Al, Ti, Cu, or an Ir—Mn alloy. The free magnetic layer has lower magnetostriction as compared to free magnetic layers included in the conventional magnetic sensors.
摘要:
A tunneling magnetic sensing element includes a pinned magnetic layer whose magnetization direction is pinned in one direction, an insulating barrier layer disposed on the pinned magnetic layer, a free magnetic layer whose magnetization direction varies in response to an external magnetic field disposed on the insulating barrier layer, and a first protective layer composed of platinum (Pt) disposed on the free magnetic layer. Consequently, it is possible to greatly decrease the magnetostriction of the free magnetic layer while maintaining a high rate of change in resistance compared with a tunneling magnetic sensing element which is not provided with a first protective layer.
摘要:
A tunneling magnetic sensing element includes a pinned magnetic layer whose magnetization direction is pinned in one direction, an insulating barrier layer disposed on the pinned magnetic layer, a free magnetic layer whose magnetization direction varies in response to an external magnetic field disposed on the insulating barrier layer, and a first protective layer composed of iridium-manganese (IrMn) disposed on the free magnetic layer. Consequently, a high rate of change in resistance is obtained and the magnetostriction of the free magnetic layer is low, compared with a tunneling magnetic sensing element which is not provided with a first protective layer.