摘要:
A tunneling magnetic sensing element includes a laminate in which a pinned magnetic layer having a magnetization direction pinned, an insulating barrier layer, and a free magnetic layer having a magnetization direction variable with an external magnetic field are laminated in order from below. The insulating barrier layer is made of Mg—O. The free magnetic layer has a soft magnetic layer and an enhanced layer disposed between the soft magnetic layer and the insulating barrier layer to have a spin polarization ratio higher than the soft magnetic layer. An insertion magnetic layer made of one selected from Co—Fe—B, Co—B, Fe—B, and Co—Fe is inserted into the soft magnetic layer in a direction parallel to the interface of each layer constituting the laminate, and the soft magnetic layer is divided into multiple layers in a thickness direction through the insertion magnetic layer.
摘要:
A tunnel magnetoresistive element includes a laminate including a pinned magnetic layer, an insulating barrier layer, and a free magnetic layer. The insulating barrier layer is composed of Ti—Mg—O or Ti—O. The free magnetic layer includes an enhancement sublayer, a first soft magnetic sublayer, a nonmagnetic metal sublayer, and a second soft magnetic sublayer. For example, the enhancement sublayer is composed of Co—Fe, the first soft magnetic sublayer and the second soft magnetic sublayer are composed of Ni—Fe, and the nonmagnetic metal sublayer is composed of Ta. The total thickness of the average thickness of the enhancement sublayer and the average thickness of the first soft magnetic sublayer is in the range of 25 to 80 angstroms. Accordingly, the tunneling magnetoresistive element can consistently have a higher rate of resistance change than before.
摘要:
A free magnetic layer has a laminated structure in which a first magnetic sublayer composed of Co—Fe or Fe and a second magnetic sublayer composed of Co—Fe—B or Fe—B are formed, in that order, on an insulating barrier layer composed of Mg—O. This effectively improves the rate of change in resistance (ΔR/R) compared with the related art.
摘要翻译:自由磁性层具有层叠结构,其中由Co-Fe或Fe组成的第一磁性子层和由Co-Fe-B或Fe-B组成的第二磁性子层依次形成在绝缘阻挡层上 的Mg-O。 与现有技术相比,这有效地提高了电阻变化率(&Dgr; R / R)。
摘要:
A tunneling magnetic sensing element includes a pinned magnetic layer whose magnetization direction is pinned in one direction, an insulating barrier layer disposed on the pinned magnetic layer, a free magnetic layer whose magnetization direction varies in response to an external magnetic field disposed on the insulating barrier layer, and a first protective layer composed of iridium-manganese (IrMn) disposed on the free magnetic layer. Consequently, a high rate of change in resistance is obtained and the magnetostriction of the free magnetic layer is low, compared with a tunneling magnetic sensing element which is not provided with a first protective layer.
摘要:
A tunnel-type magnetic detecting element is provided. The tunnel-type magnetic detecting element includes a first ferromagnetic layer; an insulating barrier layer; and a second ferromagnetic layer. The first ferromagnetic layer, the second ferromagnetic layer, or both have a Heusler alloy layer contacting the insulating barrier layer. Equivalent planes represented by {110} surfaces, are preferentially oriented parallel to a film surface in the Heusler alloy layer. The insulating barrier layer is formed of MgO and the equivalent crystal planes represented by the {100} surfaces or the equivalent crystal planes represented by the {110} surfaces are oriented parallel to the film surface.
摘要:
A first pinned magnetic sublayer 4a has a multilayered structure including a first insertion subsublayer disposed between a lower ferromagnetic subsublayer and an upper ferromagnetic subsublayer. The first insertion subsublayer has an average thickness exceeding 3 Å and 6 Å or less. This results in an interlayer coupling magnetic field Hin lower than a known art while RA and the rate of resistance change (ΔR/R) substantially identical to those of the known structure are maintained.
摘要翻译:第一固定磁性子层4a具有多层结构,其包括设置在下铁磁共晶层与上部铁磁层之间的第一插入层。 第一个插入次层具有超过3埃和6埃或更小的平均厚度。 这导致层间耦合磁场Hin低于已知技术,而RA和电阻变化率(&Dgr; R / R)与已知结构基本相同。
摘要:
A tunneling magnetic sensing element includes: a pinned magnetic layer whose direction of magnetization is pinned in one direction; an insulating barrier layer; and a free magnetic layer whose direction of magnetization changes in response to an external magnetic field. The pinned magnetic layer, the insulating barrier layer and the free magnetic layer are deposited in the named order. A first protective layer composed of a platinum-group element is disposed on the free magnetic layer, and a second protective layer composed of Ti is disposed on the first protective layer.
摘要:
A tunneling magnetic sensor includes a pinned magnetic layer of which the magnetization is pinned in one direction, an insulating barrier layer, and a free magnetic layer of which the magnetization is varied by an external magnetic field, these layers being arranged in that order from the bottom. A first protective layer made of magnesium (Mg) is disposed on the free magnetic layer. The tunneling magnetic sensor has a larger change in reluctance as compared to conventional magnetic sensors including no first protective layers or including first protective layers made of Al, Ti, Cu, or an Ir—Mn alloy. The free magnetic layer has lower magnetostriction as compared to free magnetic layers included in the conventional magnetic sensors.
摘要:
In a tunneling magnetoresistive element, an insulating barrier layer is made of Mg—O, and a first pinned magnetic layer has a laminated structure in which a nonmagnetic metal sublayer made of Ta is interposed between a lower ferromagnetic sublayer and an upper ferromagnetic sublayer. The nonmagnetic metal sublayer has an average thickness of about 1 Å or more and about 5 Å or less.
摘要:
A tunneling magnetic sensing element includes a free magnetic layer disposed on an insulating barrier layer, the free magnetic layer including an enhancement layer, a first soft magnetic layer, a first nonmagnetic metal layer, a second soft magnetic layer, a second nonmagnetic metal layer, and a third soft magnetic layer disposed in that order from the bottom. The enhancement layer is, for example, composed of Co—Fe, each of the soft magnetic layers is, for example, composed of Ni—Fe, and each of the nonmagnetic metal layers is, for example, composed of Ta. Consequently, it is possible to stably obtain a high rate of change in resistance (ΔR/R) compared with the known art.