摘要:
Disclosed herein is an apparatus for manufacturing a transparent conductive layer. The apparatus includes a transparent substrate, a longitudinal direction of which is arranged in an X axis direction. Jetting means jets a conductive polymer solution, containing ions, onto a first surface of the transparent substrate in a Y axis direction. A wire is spaced apart from a second surface of the transparent substrate by a predetermined distance and arranged in a Z axis direction. Voltage application means generates electric attractive force between the wire and the conductive polymer solution by applying a potential having polarity opposite to that of the ions to the wire. The apparatus adds ions to the conductive polymer solution, and employs a wire to which a potential having polarity opposite to that of the ions is applied, thus obtaining the advantage that the target substrate can be uniformly coated with the conductive polymer solution.
摘要:
Disclosed herein are a transparent conductive film for a touch panel and a method for manufacturing the same. A transparent conductive film 100 for a touch panel according to the present invention includes a transparent substrate 110: a plurality of silver nanowires 120 formed on the transparent substrate 110 to be parallel with each other in one direction; and a transparent electrode 130 formed on the transparent substrate to apply the silver nanowires 120, whereby the silver nanowires 120 are formed in one direction of the transparent electrode 130 having the relatively higher surface resistance to make the surface resistance constant in all directions of the transparent conductive film 100 for the touch panel, thereby making it possible to increase touch sensitivity when a touch panel is manufactured.
摘要:
Disclosed herein is a PEDOT/PSS composition, including PEDOT/PSS, a solvent, a compatibilizer and a water-soluble conductive polymer, and a transparent electrode. Since a transparent electrode is formed by adding a compatibilizer and a water-soluble conductive polymer to PEDOT/PSS, the transparent electrode has excellent flexibility, can be easily coated and has a low surface resistance of 240˜300 Ω/□, so that this transparent electrode can be used as a transparent electrode for displays.
摘要:
Disclosed herein is a microcapsule having heat-resistance in a core-shell structure, including: a conductive polymer core; and a shell made of polyimide and partially enclosing the conductive polymer core. The core-shell structure in which a partial polyimide shell is formed on the conductive polymer core is formed, thereby making it possible to improve the heat-resistance of the conductive polymer. In addition, a transparent electrode having improved heat-resistance is used to minimize a change rate in sheet resistance due to a high temperature, such that electrical reliability of a touch panel is improved, thereby making it possible to improve accuracy of an operation.
摘要:
Disclosed herein are a conductive polymer composition and a conductive film using the same. The conductive polymer composition includes: a conductive polymer; a solvent; and an ionic binder. A transparent parent is formed by adding the ionic binder to the conductive polymer, thereby making it possible to have excellent flexibility and a low sheet resistance of 110Ω/□ to 500Ω/□ and simplify a coating process of the transparent electrode. Accordingly, the transparent electrode of the present invention is suitable for being used as a display device.
摘要:
Disclosed is a method of post-treating a conductive film by oxidizing the conductive film using dipping or spraying with an acid solution, so that the band gap of the conductive polymer is decreased, thus increasing the transmittance and electrical conductivity of the conductive film.
摘要:
Disclosed is a method of preparing a conductive polymer composition, in which FTS (Ferric p-toluene sulfonate) is used as a dopant and mixed with a conductive polymer monomer before polymerizing the conductive polymer monomer, thereby facilitating the control of the concentration of the conductive polymer composition and increasing the electrical conductivity of the conductive polymer composition. A method of manufacturing a conductive film is also provided.
摘要:
Disclosed herein is a resistive touch screen, including: a lower substrate formed with a lower electrode pattern unit made of a conductive polymer and a lower electrode wiring unit connected to the lower electrode pattern unit; an upper substrate disposed on the upper side of the lower substrate and formed with an upper electrode pattern unit made of a conductive polymer and an upper electrode wiring unit connected to the upper electrode pattern unit, formed on an opposite surface thereto; a spacer disposed between the lower substrate and the upper substrate and provided with an opening formed therein; and a surface modifying layer covering at least any one of the lower electrode pattern unit and the upper electrode pattern unit and made of a material having a work function smaller than the conductive polymer.
摘要:
Disclosed herein is a method of manufacturing a touch screen, including: supplying a PET film; supplying and printing transparent conductive polymer electrodes on both sides of the PET film; printing conductive patterns on the transparent conductive polymer electrodes; supplying an adhesive to the transparent conductive polymer electrodes to form an adhesive layer; supplying a protective film to the adhesive layer; and cutting a laminate composed of the PET film, the printed transparent conductive polymer electrodes, the conductive patterns, the adhesive layer and the protective film. The method is advantageous in that a touch screen can be manufactured by an automated process using a roll-type feed or a sol-type feeder.
摘要:
Disclosed herein is a conductive polymer composition including: a conductive polymer doped with PCS (Poly cellulose-sulfonate); and a solvent. The conductive polymer composition is advantageous in that, since PCS (Poly cellulose-sulfonate) is used as a dopant, the crosslink density of a conductive polymer increases, thus improving the electrical conductivity and thermal stability of the conductive polymer composition.