摘要:
A method for preparing a ZnO nanocrystal directly on a silicon substrate includes the steps of: (S1) forming a Zn—Si—O composite thin film on the silicon substrate; and (S2) thermally treating the obtained thin film. Particularly, ZnO nanocrystals are formed in an amorphous Zn—Si—O composite thin film by controlling the composition of the Zn—Si—O composite thin film and heating temperature thereof. With the present invention method for preparing a ZnO nanocrystal directly on a silicon substrate, more possibilities are opened up for the applications of ZnO nanocrystals to an optoelectronic device in use of a silicon substrate.
摘要:
A method for preparing a ZnO nanocrystal directly on a silicon substrate includes the steps of: (S1) forming a Zn—Si—O composite thin film on the silicon substrate; and (S2) thermally treating the obtained thin film. Particularly, ZnO nanocrystals are formed in an amorphous Zn—Si—O composite thin film by controlling the composition of the Zn—Si—O composite thin film and heating temperature thereof. With the present invention method for preparing a ZnO nanocrystal directly on a silicon substrate, more possibilities are opened up for the applications of ZnO nanocrystals to an optoelectronic device in use of a silicon substrate.
摘要:
The driving circuit for an NDRO-FRAM includes several NDRO-FRAM (Non Destructive Non Volatile Ferroelectric Random Access Memory) cells each having a drain, a bulk, a source and a gate and arranged as a matrix. A plurality of reading word lines are separately connected to each drain of the NDRO-FRAM cells arranged in columns, and a plurality of writing word lines are separately connected to each bulk of the NDRO-FRM cells arranged in columns. Several data level transmission circuits for transmitting a data level of the NDRO-FRAM cells are also included, which are connected to a plurality of data level transmission circuits. Accordingly, the present invention is capable of reading and writing of data on the NDRO-FRAM cells.