摘要:
A loop back connector and methods for testing lines in a fiber optic network are disclosed. The loop back connector includes a ferrule having an interface side constructed for optical connection to a multifiber optical cable. The loop back connector also includes first and second optical loop back paths, each having first and second terminal ends positioned at the interface side. The terminal ends of each loop back path are adapted to be aligned to fibers in the multifiber optical cable. The method includes injecting a signal on a first optical path at a first location, looping back the signal at a second location onto a second optical path, and receiving the signal on the second optical path at the first location.
摘要:
A fiber breakout for connecting a branch cable to a fiber optic distribution cable is disclosed. The fiber breakout can include an optical ribbon separated from the distribution cable at a breakout location. An overmold is formed over the optical ribbon and a portion of the distribution cable at the breakout location. An optical fiber breakout connector is also disclosed. The breakout connector has first and second ends, the first end having a multifiber connector for an optical ribbon, and the second end having a plurality of single port connectors. A fiber breakout separates the optical ribbon into a plurality of fibers.
摘要:
A fiber breakout for connecting a branch cable to a fiber optic distribution cable is disclosed. The fiber breakout can include an optical ribbon separated from the distribution cable at a breakout location. An overmold is formed over the optical ribbon and a portion of the distribution cable at the breakout location. An optical fiber breakout connector is also disclosed. The breakout connector has first and second ends, the first end having a multifiber connector for an optical ribbon, and the second end having a plurality of single port connectors. A fiber breakout separates the optical ribbon into a plurality of fibers.
摘要:
A loop back connector and methods for testing lines in a fiber optic network are disclosed. The loop back connector includes a ferrule having an interface side constructed for optical connection to a multifiber optical cable. The loop back connector also includes first and second optical loop back paths, each having first and second terminal ends positioned at the interface side. The terminal ends of each loop back path are adapted to be aligned to fibers in the multifiber optical cable. The method includes injecting a signal on a first optical path at a first location, looping back the signal at a second location onto a second optical path, and receiving the signal on the second optical path at the first location.
摘要:
A loop back connector and methods for testing lines in a fiber optic network are disclosed. The loop back connector includes a ferrule having an interface side constructed for optical connection to a multifiber optical cable. The loop back connector also includes first and second optical loop back paths, each having first and second terminal ends positioned at the interface side. The terminal ends of each loop back path are adapted to be aligned to fibers in the multifiber optical cable. The method includes injecting a signal on a first optical path at a first location, looping back the signal at a second location onto a second optical path, and receiving the signal on the second optical path at the first location.
摘要:
A method for configuring an enclosure used in a communications network is described. The method may include providing a group of pigtails. The method may further include routing the group of pigtails circumferentially around a subscriber termination field, where the group of pigtails is associated with an optical splitter module used to convey optical signals to a destination, and where the routing is performed in a manner that does not substantially obstruct access to at least one of a group of subscriber terminations that are associated with the subscriber termination field.
摘要:
A method for configuring an enclosure used in a communications network is described. The method may include providing a group of pigtails. The method may further include routing the group of pigtails circumferentially around a subscriber termination field, where the group of pigtails is associated with an optical splitter module used to convey optical signals to a destination, and where the routing is performed in a manner that does not substantially obstruct access to at least one of a group of subscriber terminations that are associated with the subscriber termination field.
摘要:
A method for configuring an enclosure used in a communications network is described. The method may include providing a group of pigtails. The method may further include routing the group of pigtails circumferentially around a subscriber termination field, where the group of pigtails is associated with an optical splitter module used to convey optical signals to a destination, and where the routing is performed in a manner that does not substantially obstruct access to at least one of a group of subscriber terminations that are associated with the subscriber termination field.
摘要:
A method for configuring an enclosure used in a communications network is described. The method may include providing a group of pigtails. The method may further include routing the group of pigtails circumferentially around a subscriber termination field, where the group of pigtails is associated with an optical splitter module used to convey optical signals to a destination, and where the routing is performed in a manner that does not substantially obstruct access to at least one of a group of subscriber terminations that are associated with the subscriber termination field.
摘要:
A method for configuring an enclosure used in a communications network is described. The method may include providing a group of pigtails. The method may further include routing the group of pigtails circumferentially around a subscriber termination field, where the group of pigtails is associated with an optical splitter module used to convey optical signals to a destination, and where the routing is performed in a manner that does not substantially obstruct access to at least one of a group of subscriber terminations that are associated with the subscriber termination field.