摘要:
A high performance, set associative, cache memory tag multiplexer provides wide output pulse width without impacting hold time by separating the evaluation and restore paths and using a wider clock in the restore path than in the evaluation path. A clock controls the evaluation of the input signals. Its leading edge (i.e., rising edge) turns on NR to allow evaluation, its trailing edge (falling edge) turns off NR to stop evaluation. At this point, when NR is shut off, the inputs can start changing to set up for the next cycle. Hence the hold time of the input is determined by the clock trailing edge.
摘要:
A high performance, set associative, cache memory tag multiplexer provides wide output pulse width without impacting hold time by separating the evaluation and restore paths and using a wider clock in the restore path than in the evaluation path. A clock controls the evaluation of the input signals. Its leading edge (i.e., rising edge) turns on NR to allow evaluation, its trailing edge (falling edge) turns off NR to stop evaluation. At this point, when NR is shut off, the inputs can start changing to set up for the next cycle. Hence the hold time of the input is determined by the clock trailing edge.
摘要:
A cache memory high performance pseudo dynamic address compare path divides the address into two or more address segments. Each segment is separately compared in a comparator comprised of static logic elements. The output of each of these static comparators is then combined in a dynamic logic circuit to generate a dynamic late select output.
摘要:
A cache memory high performance pseudo dynamic address compare path divides the address into two or more address segments. Each segment is separately compared in a comparator comprised of static logic elements. The output of each of these static comparators is then combined in a dynamic logic circuit to generate a dynamic late select output.
摘要:
A successive approximation analog-to-digital converter (SA-ADC) includes a reference generator configured to output a first voltage and a second voltage; a comparator, the comparator having a positive input and a negative input thereto, the comparator being configured to receive the first voltage and the second voltage; and a comparator input toggle located between the reference generator and the comparator, wherein the comparator input toggle is configured to receive the first and second voltages from the reference generator and provide the first and second voltages to the comparator, wherein the comparator input toggle is further configured to switch between a first position, in which the first voltage is connected to the positive input, and the second voltage is connected to the negative input, and a second position, in which the second voltage is connected to the positive input, and the first voltage is connected to the negative input.
摘要:
A successive approximation analog-to-digital converter (SA-ADC) includes a reference generator configured to output a first voltage and a second voltage; a comparator, the comparator having a positive input and a negative input thereto, the comparator being configured to receive the first voltage and the second voltage; and a comparator input toggle located between the reference generator and the comparator, wherein the comparator input toggle is configured to receive the first and second voltages from the reference generator and provide the first and second voltages to the comparator, wherein the comparator input toggle is further configured to switch between a first position, in which the first voltage is connected to the positive input, and the second voltage is connected to the negative input, and a second position, in which the second voltage is connected to the positive input, and the first voltage is connected to the negative input.