摘要:
A voltage having the positive polarity and a voltage having the negative polarity are alternately applied to a pixel between a counter electrode and a pixel electrode. A counter electrode voltage (Vcom) generating circuit or a source signal generating section is provided each of which controls effective voltages to be applied to the pixel for an identical tone so that an effective voltage having the positive polarity and an effective voltage having the negative polarity are asymmetrically applied to the pixel for all of the tones which can be displayed. The counter electrode voltage (Vcom) generating circuit or the source signal generating section shifts a counter electrode voltage Vcom-A or a source voltage by 0.3 V or more from a voltage causing the effective voltages to be symmetrically applied to the pixel.
摘要:
A voltage having the positive polarity and a voltage having the negative polarity are alternately applied to a pixel between a counter electrode and a pixel electrode. A counter electrode voltage (Vcom) generating circuit or a source signal generating section is provided each of which controls effective voltages to be applied to the pixel for an identical tone so that an effective voltage having the positive polarity and an effective voltage having the negative polarity are asymmetrically applied to the pixel for all of the tones which can be displayed. The counter electrode voltage (Vcom) generating circuit or the source signal generating section shifts a counter electrode voltage Vcom-A or a source voltage by 0.3 V or more from a voltage causing the effective voltages to be symmetrically applied to the pixel.
摘要:
A liquid crystal display device in which alignment control in a vertical-alignment-type liquid crystal layer is excellent at a side portion or a corner portion of a pixel electrode.The liquid crystal display device includes a pixel electrode 17 including openings 18 of slits as an alignment control mechanism, a common electrode 33 including linear protrusions 34 to 34c as an alignment control mechanism, the electrodes being opposed to each other, and a vertical-alignment-type liquid crystal layer 40 which is sandwiched between the electrodes, wherein the linear protrusion 34c is placed at a position where the linear protrusion 34c controls alignment in the liquid crystal layer inside a position where an oblique electric field 59 which is generated at the edge of an corner portion 17e of the pixel electrode 17 at the time when a voltage is applied between the electrodes controls the alignment in the liquid crystal layer.
摘要:
A liquid crystal display device in which alignment control in a vertical-alignment-type liquid crystal layer is excellent at a side portion or a corner portion of a pixel electrode. The liquid crystal display device includes a pixel electrode including openings of slits as an alignment control mechanism, a common electrode including linear protrusions as an alignment control mechanism, the electrodes opposed to each other, and a vertical-alignment-type liquid crystal layer sandwiched between the electrodes, wherein the linear protrusion is placed at a position where the linear protrusion controls alignment in the liquid crystal layer inside a position where an oblique electric field generated at the edge of an corner portion of the pixel electrode at the time when a voltage is applied between the electrodes controls the alignment in the liquid crystal layer.
摘要:
A liquid crystal display device in which alignment control in a vertical-alignment-type liquid crystal layer is excellent at a side portion or a corner portion of a pixel electrode.The liquid crystal display device includes a pixel electrode 17 including openings 18 of slits as an alignment control mechanism, a common electrode 33 including linear protrusions 34 to 34c as an alignment control mechanism, the electrodes being opposed to each other, and a vertical-alignment-type liquid crystal layer 40 which is sandwiched between the electrodes, wherein the linear protrusion 34c is placed at a position where the linear protrusion 34c controls alignment in the liquid crystal layer inside a position where an oblique electric field 59 which is generated at the edge of an corner portion 17e of the pixel electrode 17 at the time when a voltage is applied between the electrodes controls the alignment in the liquid crystal layer.
摘要:
A liquid crystal display device in which alignment control in a vertical-alignment-type liquid crystal layer is excellent at a side portion or a corner portion of a pixel electrode. The liquid crystal display device includes a pixel electrode including openings of slits as an alignment control mechanism, a common electrode including linear protrusions as an alignment control mechanism, the electrodes opposed to each other, and a vertical-alignment-type liquid crystal layer sandwiched between the electrodes, wherein the linear protrusion is placed at a position where the linear protrusion controls alignment in the liquid crystal layer inside a position where an oblique electric field generated at the edge of an corner portion of the pixel electrode at the time when a voltage is applied between the electrodes controls the alignment in the liquid crystal layer.
摘要:
In a liquid crystal display device, an array substrate and a CF substrate are arranged face to face with each other. A liquid crystal layer is provided between the array substrate and the CF substrate. The array substrate and the CF substrate are bonded together by a sealing member containing a photo curing material. The array substrate has a surface opposed to the CF substrate. Metal wires are provided in the circumferential portion of the opposed surface. A transparent film is disposed between the metal wires and the sealing member.
摘要:
The method of the present invention includes the steps of: (A) providing a first substrate, and a second substrate, wherein the first substrate includes a first light shielding layer provided within a non-display region, the first light shielding layer including a light-transmitting portion provided near an outer boundary of the first light shielding layer, the light-transmitting portion comprising a recess or an opening; (B) drawing a seal pattern with a sealant, the seal pattern being drawn outside the first light shielding layer so as to surround the display region, comprising the substeps of: (B1) beginning application of the sealant near the light-transmitting portion, (B2) applying the sealant along an outer periphery of the first light shielding layer, and (B3) forming a junction with the sealant having been applied near the light-transmitting portion; (C) applying a liquid crystal material within the display region surrounded by the sealant; (D) attaching the first substrate and the second substrate; and (E) performing light irradiation from the first substrate side to cure the sealant.
摘要:
A liquid crystal display device is one in which unevenness of display, spots, etc. caused by lowering of voltage retention by impurity ions are sufficiently eliminated and reliability of long time/long term use is improved. A liquid crystal display device is formed with a liquid crystal layer between a first substrate and a second substrate configured via a seal, wherein the liquid crystal display device includes electrodes on the liquid crystal layer side of a non-display region of the first substrate and/or the second substrate, and the potentials of the electrodes are substantially the same.
摘要:
A total layer thickness detection apparatus for a charged body includes: a saturated charge amount detection unit that detects a saturated charge amount of a charged body having plural coating layers with mutually different relative dielectric constants; a storage unit that stores relation information indicating relation of change of the saturated charge amount of the charged body with respect to a change of layer thickness of a surface layer of the charged body; and a calculation part that calculates a total layer thickness of the plural coating layers of the charged body based on the change of the saturated charge amount detected by the saturated charge amount detection unit and the relation information stored in the storage unit.