Abstract:
A grain oriented electrical steel sheet has a total length of cracks in a film on a steel sheet surface, of 20 μm or less per 10000 μm2 of the film, wherein magnetic domain refinement interval in a rolling direction of the steel sheet, provided in magnetic domain refinement through substantially linear introduction of thermal strain from one side of the steel sheet corresponding to a winding outer peripheral side of a coiled steel sheet at a stage of final annealing in a direction intersecting the rolling direction; and deflection of 3 mm or less per unit length: 500 mm in the rolling direction of the steel sheet.
Abstract:
A grain oriented electrical steel sheet has a total length of cracks in a film on a steel sheet surface, of 20 μm or less per 10000 μm2 of the film, wherein magnetic domain refinement interval in a rolling direction of the steel sheet, provided in magnetic domain refinement through substantially linear introduction of thermal strain from one side of the steel sheet corresponding to a winding outer peripheral side of a coiled steel sheet at a stage of final annealing in a direction intersecting the rolling direction; and deflection of 3 mm or less per unit length: 500 mm in the rolling direction of the steel sheet.
Abstract:
A grain oriented electrical steel sheet includes forsterite film on a surface of base steel sheet and a selenium-concentrated portion in at least one of the forsterite film and an interface between the forsterite film and the base steel sheet by a presence ratio expressed as area-occupying ratio of the Se-concentrated portion, of at least 2%, per 10000 μm2 of the surface of the base steel sheet, which has been subjected to magnetic domain refinement treatment by electron beam irradiation.
Abstract:
An electrical steel sheet contains, as components, by mass %, 0.005% or less of C, 1.0% to 8.0% of Si, and 0.005% to 1.0% of Mn; one or more selected from Nb, Ta, V, and Zr such that a total content thereof is 10 to 50 ppm; and the balance being Fe and unavoidable impurities, wherein at least 10% of the content of Nb, Ta, V, and Zr is in the form of precipitates; the precipitates have an average diameter (equivalent circle diameter) of 0.02 to 3 μm; and secondary recrystallized grains of the steel sheet have an average grain size of 5 mm or more.
Abstract:
In a method of producing a grain-oriented electrical steel sheet by hot-rolling a steel slab of a chemical composition containing C: 0.001˜0.10%, Si: 1.0˜5.0%, Mn: 0.01˜1.0%, at least one of S and Se: 0.01˜0.05% in total, sol. Al: 0.003˜0.050%, N: 0.001˜0.020% by mass, subjecting to cold rolling, a primary recrystallization annealing, application of an annealing separator mainly composed of MgO and a finish annealing, a temperature rising rate S1 between 500˜600° C. in the primary recrystallization annealing is made to not less than 100° C./s and a temperature rising rate S2 between 600˜700° C. is made to 30° C./s˜0.6×S1° C./s, while a total content W (mol %) of an element having an ionic radius of 0.6˜1.3 Å and an attracting force between the ion and oxygen of not more than 0.7 Å−2 included in the annealing separator to MgO is adjusted to satisfy 0.01S2-5.5≦Ln (W)≦0.01S2−4.3 to produce a grain-oriented electrical steel sheet having excellent iron loss properties and coating properties.
Abstract:
The present invention provides a grain-oriented electrical steel sheet produced by a method for promoting secondary recrystallization without an inhibitor, the grain-oriented electrical steel sheet including 2.0% or more and 4.5% or less of Si and 0.01% or more and 0.5% or less of Mn on a mass % basis, wherein the number of oxide particles having a diameter of 1 to 3 μm among that (oxide particles) of containing Ca and/or Mg is 400 or less per unit area (1 cm2) in a transverse cross-section perpendicular to a rolling direction. Therefore, the grain-oriented electrical steel sheet has excellent stable magnetic properties throughout the length of a coil.
Abstract:
In the production of a grain-oriented electrical steel sheet by hot rolling a steel slab comprising C: 0.001˜0.10 mass %, Si: 1.0˜5.0 mass %, Mn: 0.01˜0.5 mass %, sol. Al: 0.003˜0.050 mass %, N: 0.0010˜0.020 mass %, one or two selected from S and Se: 0.005˜0.040 mass % in total, cold rolling, primary recrystallization annealing, and final annealing, a heating rate S1 between a temperature T1 (° C.): 500+2×(NB−NA) and a temperature T2 (° C.): 600+2×(NB−NA) in a heating process of the primary recrystallization annealing is set to not less than 80° C./sec, and an average heating rate S2 from the temperature T2 to 750° C. is set to 0.1˜0.7 times of S1, whereby a grain-oriented electrical steel sheet having a low iron loss over a full length of a product coil is obtained.
Abstract:
In a method of producing a grain-oriented electrical steel sheet by subjecting a coil for grain-oriented electrical steel sheet after cold rolling to a primary recrystallization annealing, applying an annealing separator thereon, and conducting final annealing, rapid heating is conducted at a rate of not less than 80° C./sec from 500° C. to 700° C. in the course of heating for the primary recrystallization annealing, and a temperature keeping treatment is conducted for 2 to 100 hours from 700° C. to 1000° C. in the course of heating for the final annealing, and further, the final annealing is preferably conducted by laying a thermal insulation material on an upper surface of a coil supporting stand in an annealing furnace used for the final annealing concentrically from the outer periphery of the coil supporting stand and over an area of not less than 20% of the radius of the coil supporting stand.
Abstract:
The present invention provides a grain-oriented electrical steel sheet produced by a method for promoting secondary recrystallization without an inhibitor, the grain-oriented electrical steel sheet including 2.0% or more and 4.5% or less of Si and 0.01% or more and 0.5% or less of Mn on a mass % basis, wherein the number of oxide particles having a diameter of 1 to 3 μm among that (oxide particles) of containing Ca and/or Mg is 400 or less per unit area (1 cm2) in a transverse cross-section perpendicular to a rolling direction. Therefore, the grain-oriented electrical steel sheet has excellent stable magnetic properties throughout the length of a coil.
Abstract:
In a method of producing a grain-oriented electrical steel sheet by subjecting a coil for grain-oriented electrical steel sheet after cold rolling to a primary recrystallization annealing, applying an annealing separator thereon, and conducting final annealing, rapid heating is conducted at a rate of not less than 80° C./sec from 500° C. to 700° C. in the course of heating for the primary recrystallization annealing, and a temperature keeping treatment is conducted for 2 to 100 hours from 700° C. to 1000° C. in the course of heating for the final annealing, and further, the final annealing is preferably conducted by laying a thermal insulation material on an upper surface of a coil supporting stand in an annealing furnace used for the final annealing concentrically from the outer periphery of the coil supporting stand and over an area of not less than 20% of the radius of the coil supporting stand.