摘要:
In the condition that an acrylic transparent vessel is filled with a curable resin solution capable of being cured by a light, a plastic optical fiber is immersed in the curable resin solution. A laser beam is applied on the curable resin solution through the plastic optical fiber. The curable resin solution is cured gradually by the laser beam applied on the curable resin solution, so that an axial core is formed. Then, the transparent vessel is left at rest for predetermined time, or uncured part of the curable resin solution is removed from the transparent vessel and the transparent vessel is then filled with another curable resin solution. Then, ultraviolet rays are applied on the transparent vessel from the outside of the transparent vessel to cure the residual uncured part of the curable resin solution.
摘要:
In the condition that an acrylic transparent vessel is filled with a curable resin solution capable of being cured by a light, a plastic optical fiber is immersed in the curable resin solution. A laser beam is applied on the curable resin solution through the plastic optical fiber. The curable resin solution is cured gradually by the laser beam applied on the curable resin solution, so that an axial core is formed. Then, the transparent vessel is left at rest for predetermined time, or uncured part of the curable resin solution is removed from the transparent vessel and the transparent vessel is then filled with another curable resin solution. Then, ultraviolet rays are applied on the transparent vessel from the outside of the transparent vessel to cure the residual uncured part of the curable resin solution.
摘要:
Interference filters which are optical components are erected in advance on optical paths in a transparent container, and the transparent container is filled with a photo-curable resin solution. Further, a jig is prepared for manufacturing an optical waveguide device. The jig includes a housing, and holes. On this occasion, positions of the holes are set such that light input through the hole reaches the holes via the interference filters. Optical fibers are fitted into the holes of the housing and the housing is mounted on the transparent container. Next, light at a predetermined wavelength is guided into the optical fibers so that optical waveguides are formed in the photo-curable resin solution. Next, the photo-curable resin solution is exchanged for a low-refractive-index photo-curable resin solution and then the low-refractive-index photo-curable resin solution is solidified wholly by ultraviolet light. Finally, for example, an optical fiber, a light-receiving element, etc. are provided.
摘要:
Interference filters which are optical components are erected in advance on optical paths in a transparent container, and the transparent container is filled with a photo-curable resin solution. Further, a jig is prepared for manufacturing an optical waveguide device. The jig includes a housing, and holes. On this occasion, positions of the holes are set such that light input through the hole reaches the holes via the interference filters. Optical fibers are fitted into the holes of the housing and the housing is mounted on the transparent container. Next, light at a predetermined wavelength is guided into the optical fibers so that optical waveguides are formed in the photo-curable resin solution. Next, the photo-curable resin solution is exchanged for a low-refractive-index photo-curable resin solution and then the low-refractive-index photo-curable resin solution is solidified wholly by ultraviolet light. Finally, for example, an optical fiber, a light-receiving element, etc. are provided.
摘要:
An optical fiber, a mixture solution of the photosetting resins polymerizing in two different polymerization types, and a transparent container are prepared. The photosetting resins are not copolymerized, and have different activation wavelengths of the photopolymerization initiators for hardening. Employing a combination in which the activation wavelength of a photopolymerization initiator for a photosetting resin with higher refractive index after hardening is longer than the activation wavelength of a photopolymerization initiator for a photosetting resin with lower refractive index after hardening, a core portion can be only formed by hardening the photosetting resin with higher refractive index due to a difference between two wavelengths. Thereafter, a clad portion can be formed by hardening two kinds of photosetting resins, whereby an optical transmission device can be manufactured.
摘要:
A transparent vessel is filled with a mixture solution containing a first photo-curable resin of a low refractive index and a second photo-curable resin of a high refractive index different in curing mechanism. When light at a wavelength capable of curing the first photo-curable resin but incapable of curing the second photo-curable resin is applied to the mixture solution through an optical fiber, the first photo-curable resin can be cured in a state in which the second photo-curable resin is enclosed in the cured first photo-curable resin. Because the refractive index increases according to curing, a self-condensing phenomenon can be generated so that an optical path portion is formed. The optical path portion emits leakage light to its surroundings to thereby form an outer circumferential portion. Then, all uncured resins in the mixture solution are cured. The outer circumferential portion containing a high percentage of the cured first photo-curable resin serves as a clad because the refractive index of the outer circumferential portion is lower than that of the optical path portion.
摘要:
Into a mixture solution 2 of a high-refractive-index photo-curable resin A and a low-refractive-index photo-curable resin B, light capable of curing only the resin A is led through an optical fiber 1 so that a cured resin 211 of the resin A having a diameter substantially equal to the diameter of a core portion of the optical fiber is formed so as to extend from a tip of the optical fiber. Then, the residual mixture solution 2 is cured. In this manner, a module having the previously cured high-refractive-index resin 211 as an optical waveguide can be formed easily. On this occasion, the mixed state of the mixture solution 2 can be kept good enough to facilitate the formation of the high-refractive-index resin 211 when the solubility parameter δA of the high-refractive-index photo-curable resin A and the solubility parameter δB and volume fraction ΦB of the low-refractive-index photo-curable resin B satisfy the following expression (4). |δA−δB|
摘要:
Transparent parallel planar plates which are members for retaining an optical waveguide are provided erectly in an optical path of light in a transparent vessel in advance. An optical fiber is fixed into the transparent vessel while the optical fiber penetrates the transparent vessel, and an optical sensor is also disposed adjustably. Next, a first photo-curable resin solution is injected into the transparent vessel, and light with a predetermined wavelength for curing is emitted from the optical fiber so that the optical waveguide is self-formed by polymerization reaction. Because the parallel planar plates are transparent, the optical waveguide is formed so as to be extended again from the emission ports of the parallel planar plates. Finally, the optical waveguide is formed so as to reach a bottom surface of the transparent vessel. The optical waveguide has a structure in which the optical waveguide is firmly supported at four points in a forward end surface of the optical fiber, the parallel planar plates and the bottom surface of the transparent vessel. Accordingly, a firm optical waveguide device is formed.