摘要:
The present invention discloses organometallic complexes with transition metal elements and their application in fabrication of a variety of light-emitting devices. The mentioned organometallic complexes can serve as emitting material or dopant for blue phosphorescent organic light-emitting devices with excellent performance. The mentioned organometallic complexes have a general formula as the following: Wherein M represents a transition metal element, and Q1 and Q2 respectively represent an atomic group forming a nitrogen-containing heterocyclic ring as a five member ring, a six member ring, or a seven member ring.
摘要:
The present invention discloses organometallic complexes with transition metal elements and their application in fabrication of a variety of light-emitting devices. The mentioned organometallic complexes can serve as emitting material or dopant for blue phosphorescent organic light-emitting devices with excellent performance. The mentioned organometallic complexes have a general formula as the following: Wherein M represents a transition metal element, and Q1 and Q2 respectively represent an atomic group forming a nitrogen-containing heterocyclic ring as a five member ring, a six member ring, or a seven member ring.
摘要:
The present invention discloses a phosphorescent tris-chelated transition metal complex comprising i) two identical non-conjugated cyclometalated ligands being incorporated into a coordination sphere thereof with a transition metal, and one ligated chromophore being incorporated into the coordination sphere; or ii) one non-conjugated cyclometalated ligand forming a coordination sphere thereof with a transition metal, and two ligated chromophores being incorporated into the coordination sphere, wherein the metal is iridium, platinum, osmium or ruthenium, and the ligated chromophore possesses a relatively lower energy gap in comparison with that of the non-conjugated cyclometalated ligand, the latter afforded an effective barrier for inhibiting the ligand-to-ligand charge transfer process, so that a subsequent radiative decay from an excited state of these transition complexes will be confined to the single ligated chromophore. The architecture and energy gap of the ligated chromophore are suitable for generation of high efficiency blue, green and even red emissions.
摘要:
The present invention provides a phosphorescent tris-chelated transition metal complex having one carbon-nitrogen (ĈN) or nitrogen-nitrogen (N̂N) chromophoric ligand forming a coordination sphere thereof with a transition metal, and two identical carbon-phosphorus (ĈP) chelates being incorporated into the coordination sphere, wherein the metal is iridium, platinum, osmium or ruthenium, and the chromophoric ligands possess a relatively lower energy gap in comparison with that of the non-chromophoric chelate, the latter afforded an effective barrier for inhibiting the ligand-to-ligand charge transfer process, so that bright phosphorescence can be observed. The architecture and energy gap of the present molecular designs are suitable for generation of high efficiency blue, green and even red emissions.
摘要:
The present invention provides a phosphorescent tris-chelated transition metal complex having one carbon-nitrogen (C^N) or nitrogen-nitrogen (N^N) chromophoric ligand forming a coordination sphere thereof with a transition metal, and two identical carbon-phosphorus (C^P) chelates being incorporated into the coordination sphere, wherein the metal is iridium, platinum, osmium or ruthenium, and the chromophoric ligands possess a relatively lower energy gap in comparison with that of the non-chromophoric chelate, the latter afforded an effective barrier for inhibiting the ligand-to-ligand charge transfer process, so that bright phosphorescence can be observed. The architecture and energy gap of the present molecular designs are suitable for generation of high efficiency blue, green and even red emissions.
摘要:
The present invention provides a series of phosphorescent transition metal complexes having a facially arranged, carbon-phosphorus-carbon (C^P^C) tridentate chelate, alone with one monoanionic bidentate chromophoric chelate (either C^N or A^N) and one arbitrary charge neutral chelate (L), or with one charge neutral bidentate chromophoric chelate (N^N) and one arbitrary anionic ligand (X); all of them can be used to generate high efficiency photo-induced phosphorescence at room temperature, as well as bright electroluminescence upon employment of these materials in the fabrication of organic light-emitting devices.
摘要:
The present invention discloses a phosphorescent tris-chelated transition metal complex comprising i) two identical carbon-nitrogen (C^N) or nitrogen-nitrogen (N^N) chromophoric ligands being incorporated into a coordination sphere thereof with a transition metal, and one carbon-phosphorus (C^P) chelate being incorporated into the coordination sphere; or ii) one carbon-nitrogen (C^N) or nitrogen-nitrogen (N^N) chromophoric ligand forming a coordination sphere thereof with a transition metal, and two identical carbon-phosphorus (C^P) chelates being incorporated into the coordination sphere, wherein the metal is iridium, platinum, osmium or ruthenium, and the chromophoric ligands possess a relatively lower energy gap in comparison with that of the non-chromophoric chelate, the latter afforded an effective barrier for inhibiting the ligand-to-ligand charge transfer process, so that bright phosphorescence can be observed. The architecture and energy gap of the present molecular designs are suitable for generation of high efficiency blue, green and even red emissions.
摘要:
The present invention discloses a phosphorescent tris-chelated transition metal complex comprising i) two identical non-conjugated cyclometalated ligands being incorporated into a coordination sphere thereof with a transition metal, and one ligated chromophore being incorporated into the coordination sphere; or ii) one non-conjugated cyclometalated ligand forming a coordination sphere thereof with a transition metal, and two ligated chromophores being incorporated into the coordination sphere, wherein the metal is iridium, platinum, osmium or ruthenium, and the ligated chromophore possesses a relatively lower energy gap in comparison with that of the non-conjugated cyclometalated ligand, the latter afforded an effective barrier for inhibiting the ligand-to-ligand charge transfer process, so that a subsequent radiative decay from an excited state of these transition complexes will be confined to the single ligated chromophore. The architecture and energy gap of the ligated chromophore are suitable for generation of high efficiency blue, green and even red emissions.
摘要:
The present invention provides a series of phosphorescent transition metal complexes having a facially arranged, carbon-phosphorus-carbon (ĈP̂C) tridentate chelate, alone with one monoanionic bidentate chromophoric chelate (either ĈN or ÂN) and one arbitrary charge neutral chelate (L), or with one charge neutral bidentate chromophoric chelate (N̂N) and one arbitrary anionic ligand (X); all of them can be used to generate high efficiency photo-induced phosphorescence at room temperature, as well as bright electroluminescence upon employment of these materials in the fabrication of organic light-emitting devices.
摘要:
The present invention discloses a phosphorescent tris-chelated transition metal complex comprising i) two identical non-conjugated cyclometalated ligands being incorporated into a coordination sphere thereof with a transition metal, and one ligated chromophore being incorporated into the coordination sphere; or ii) one non-conjugated cyclometalated ligand forming a coordination sphere thereof with a transition metal, and two ligated chromophores being incorporated into the coordination sphere, wherein the metal is iridium, platinum, osmium or ruthenium, and the ligated chromophore possesses a relatively lower energy gap in comparison with that of the non-conjugated cyclometalated ligand, the latter afforded an effective barrier for inhibiting the ligand-to-ligand charge transfer process, so that a subsequent radiative decay from an excited state of these transition complexes will be confined to the single ligated chromophore. The architecture and energy gap of the ligated chromophore are suitable for generation of high efficiency blue, green and even red emissions.