Abstract:
One embodiment relates to a computer-implemented process of content fingerprinting. A context and a content for fingerprinting are received. The context comprises a set of context components for use in generation of content fingerprints. The content includes instances of at least some of the context components. The content is processed to generate context offset sequences, and a fingerprint for the content is formed from at least a portion of the context offset sequences. Another embodiment relates to a computer-implemented process for comparing a target content against a pool of contents. The process includes constructing an automata data structure based on the fingerprints in the pool. Context offset sequences of a target fingerprint are scanned against the automata data structure to determine matched offset subsequences. Other embodiments, aspects and features are also disclosed.
Abstract:
An organic light emitting diode is provided. The organic light emitting diode includes a substrate, an anode electrode structure formed on the substrate and including at least a metal layer and a metal oxide layer, an organic layer formed on the anode electrode structure and a cathode electrode structure formed on the organic layer. The metal oxide layer includes an oxide of the metal layer and has a thickness ranged between 1 to 50 nm
Abstract:
The present invention discloses synthesis of 2,2′-disubstituted 9,9′-spirobifluorene-based triaryldiamine. First, 2,2′-diamino-9,9′-spirobifluorene, a Pd-catalyst as auxiliary and aryl halide BX are provided, wherein X is selected from the group consisting of: Cl, Br and I, B comprises one of the following group: aryl moiety, hetero cycle, multiple fused ring, multiple fused ring with hetero atom(s). Next, a substitution reaction is performed to react the 2,2′-diamino-9,9′-spirobifluorene with the aryl halide BX to produce the 2,2′-disubstituted 9,9′-spirobifluorene-based triaryldiamines. In addition, the present invention discloses organic light emitting devices comprising hole transporting material comprising 2,2′-bis(N,N-disubstituted amino)-9,9′-spirobifluorenes.
Abstract:
A reconfigurable organic light-emitting device and a display apparatus employing the organic light-emitting device, wherein the reconfigurable organic light-emitting device includes at least two organic light-emitting layers and at least one high-energy-gap carrier-blocking layer. The at least one high-energy-gap carrier-blocking layer is formed between the organic light-emitting layers. The structure of the reconfigurable organic light-emitting device can be reconfigured through heating, and the reconfigurable organic light-emitting device may thus emit light characteristic of one layer of the at least two organic light-emitting layers, after a bias voltage is applied on the upper electrode and the lower electrode of the reconfigurable organic light-emitting device. The heating may be performed with a built-in resistive heating source, an external heating source or a light-beam. By employing the reconfigurable organic light-emitting device, a fixed-pattern, passive-matrix, or active-matrix display apparatus of multi-color or full-color may further be fabricated.
Abstract:
A fluorene-based pyrimidine-containing conjugated oligomer applied in six different layers in an OLED, respectively, used as an electron-transport emitting layer, an emitting layer, a host in the emitting layer, the ETL, a host in the electron-transport emitting layer, and a hole-blocking layer to upgrade light-emitting efficiency and regulate emitting color of the OLED.
Abstract:
The present disclosure relates to methods and systems for synthesis of bridged-hydropentacene, hydroanthracene and hydrotetracene from the precursor compounds pentacene derivatives, tetracene derivatives, and anthracene derivatives. The invention further relates to methods and systems for forming thin films for use in electrically conductive assemblies, such as semiconductors or photovoltaic devices.
Abstract:
The present invention discloses synthesis of 2,2′-disubstituted 9,9′-spirobifluorene-based triaryldiamine. First, 2,2′-diamino-9,9′-spirobifluorene, a Pd-catalyst as auxiliary and aryl halide BX are provided, wherein X is selected from the group consisting of: Cl, Br and I, B comprises one of the following group: aryl moiety, hetero cycle, multiple fused ring, multiple fused ring with hetero atom(s). Next, a substitution reaction is performed to react the 2,2′-diamino-9,9′-spirobifluorene with the aryl halide BX to produce the 2,2′-disubstituted 9,9′-spirobifluorene-based triaryldiamines. In addition, the present invention discloses organic light emitting devices comprising hole transporting material comprising 2,2′-bis(N,N-disubstituted amino)-9,9′-spirobifluorenes.
Abstract:
Systems for displaying images. A representative system incorporates an electroluminescent diode that includes a composite electrode structure. Particularly, the composite electrode structure comprises a layer containing alkali or alkaline earth compounds, and a metal oxide layer or semiconductor layer. Wherein, the alkali or alkaline earth compound has carbonyl group or fluorine.
Abstract:
A top emitting OLED is provided. The top emitting OLED comprises a substrate, a first electrode layer, an organic layer, and a second electrode layer. Wherein, the first electrode layer is formed on the substrate, the organic layer is formed on the first electrode layer, and the second electrode layer with a first refractive index is formed on the organic layer. Moreover, an anti-reflective layer with a second refractive index is formed on the second electrode layer. The first refractive index is different from the second refractive index, and the first thickness is matched and cooperated with the second thickness for reducing the reflectance of the OLED on visible light region.
Abstract:
Organic light emitting devices and methods of making them are described. The devices contain a substrate, a first electrical contact layer, a patterned organic layer, and a second electrical contact layer. A covering portion covers the sides of the organic layer, protecting the same. In the methods, a first organic layer is provided over a first electrical contact layer, followed by a patterned second electrical contact layer. The organic layer is etched using the patterned electrical contact layer as a mask. In one embodiment, the etching step exposes an area over the first electrical contact layer, and a second organic layer is provided over the exposed area.