摘要:
Disclosed are a wearable mobile phone capable of detecting EMG changed by hand motion of a user and a control method of an input unit of the wearable mobile phone. The wearable mobile phone includes an EMG measuring unit 10 having a plurality of EMG measuring sensors 11 for detecting the EMG changed by hand motion of a user, and made in a ring shape to be worn on a wrist of the user, an EMG transferring unit 20 connected to the EMG measuring unit 10 for transferring the EMG measured by the EMG measuring unit, an EMG determining unit 30 mounted to one side of the EMG transferring unit 20 for receiving EMG from the EMG transferring unit to determine the hand motion and extract an input signal for the mobile phone corresponding to the hand motion, and a mobile phone functioning unit 40 receiving the input signal from the EMG determining unit for functioning the mobile function and having an antenna and a sound transferring device. The wearable mobile phone allows the user to input wanted information related to operation of the mobile phone, without using input keys, which can miniaturize the mobile phone and easily carry the mobile phone.
摘要:
A biological signal measuring apparatus includes a first biological signal measuring sensor attached to an earphone used for a mobile phone; and a biological signal receiver for receiving a biological signal from the first biological signal measuring sensor to thereby generate first raw data. The apparatus may further include a second biological signal measuring sensor attached to one of the mobile phone and an adaptor connected to the mobile phone, wherein the biological signal receiver receives a biological signal from the second biological signal measuring sensor to thereby generate second raw data. The apparatus is provided with a controller for detecting whether the mobile phone is used, wherein the controller drives the first and the second biological signal measuring sensor to measure the biological signal when the mobile phone is being used, and stops measuring the biological signals when the use of the mobile phone is finished.
摘要:
The present invention relates to a technology of maintaining and managing a contents push channel using a smart phone, and more particularly, to a personalized channel service providing system, real-time channel service providing method, and a personalized channel service providing method capable of maintaining and managing a personalized contents channel using a portable smart phone and timely using personalized contents by pushing to devices having a large display such as TV, etc., if necessary.
摘要:
A wearable apparatus for converting a vision signal into a haptic signal, an agent system using the same, and an operating method thereof are provided. If a blind person has a vision signal processing module mounted on glasses and a haptic signal processing module wore on a skin, it can be very useful for the blind person because a guide for a white cane and a voice guiding service can be provided through a network. The guide for the white cane is performed by adjusting various heights and vibration intensities of pins of a matrix according to a Y component extracted from an image of surroundings.
摘要:
The present invention discloses cell permeable Nanog and Oct4 recombinant proteins that comprise a kaposi fibroblast growth factor 4 (kFGF4)-derived macromolecule transduction domain (MTD). Also disclosed are polynucleotides encoding the cell permeable Nanog and Oct4 recombinant proteins, a method of increasing self-renewal and suppressing differentiation of stem cells by treating the cells in combination with the cell permeable Nanog and Oct4 recombinant proteins, and the combined use of the cell permeable Nanog and Oct4 recombinant proteins for increasing self-renewal and suppressing differentiation of stem cells.
摘要:
The present invention discloses cell permeable Nanog and Oct4 recombinant proteins that comprise a kaposi fibroblast growth factor 4 (kFGF4)-derived macromolecule transduction domain (MTD). Also disclosed are polynucleotides encoding the cell permeable Nanog and Oct4 recombinant proteins, a method of increasing self-renewal and suppressing differentiation of stem cells by treating the cells in combination with the cell permeable Nanog and Oct4 recombinant proteins, and the combined use of the cell permeable Nanog and Oct4 recombinant proteins for increasing self-renewal and suppressing differentiation of stem cells.