Abstract:
A shading correction apparatus includes: a light irradiating unit configured to scan an original document; a reference plate located in a scanning area of the light irradiating unit; a detecting unit configured to receive reflected light from the original document or the reference plate of light irradiated by the light irradiating unit; a first control unit configured to classify plural areas of the reference plate, which are divided in a direction perpendicular to a traveling direction of the light irradiating unit, as plural blocks, scan the reference plate for each of the blocks with the light irradiating unit, and detect valid areas of the plural blocks; and a second control unit configured to set the valid areas of the plural blocks as adopted areas used for shading correction.
Abstract:
According to an embodiment, an image reading apparatus includes: a light emitting body configured to emit light at illuminance lower than illuminance in reading an original document; a sensor configured to detect opening and closing of a cover; an image pickup element configured to pick up an image of the original document, on which the light from the light emitting body is irradiated, if the cover is open; and a control and determining section configured to turn on the light emitting body if the cover is opened and specify a pixel having a value exceeding a threshold from the picked-up image to determine the size of the original document.
Abstract:
In an image reading apparatus for reading a color document as a monochrome image, an image forming apparatus of the invention includes a composite light source that irradiates the color document and includes plural light sources different in spectral distribution, a sensor to detect the intensity of a reflected light from the color document, a light emission ratio setting unit to changeably set light emission ratios different for the respective light sources, and a light source control unit to control effective light amounts of the plural light sources with the set light emission ratios. According to the image forming apparatus of the invention, when the color document is monochromatically read, the reading is performed with the brightness close to the human visual sensitivity, the user can changeably set color sensitivity, and uneven density can be reduced.
Abstract:
An image reading apparatus having a color line sensor and a monochromatic line sensor starts to read on the basis of the color reading start position when reading the image of a document in color and starts to read on the basis of the monochromatic reading start position when reading the image of a document in monochrome.
Abstract:
Black tapes 61 and 62 having optical reflectances different from that of the texture of a document D are stuck to the lower side of a platen cover 3. The black tapes 61 and 62 have the optical reflectances different from that of the texture of the document D. When the document D set on a document table 2 and the black tapes 61 and 62 are exposed by a light exposure lamp 5, at least one edge of the document D set on the document table 2 and the length of the edge are detected according to the amount of reflected light from the document D and that from the black tapes 61 and 62. The size of the document D set on the document table 2 is judged according to the detected length of the edge.
Abstract:
An optical reading apparatus and a multifunction-type image forming apparatus, with a minimized thickness in a cabinet height direction and a housing shaped along an upper shape of discharge tray of the image forming apparatus provided thereunder. The optical reading apparatus comprises: platen glass defined with one end and the other end, on an upper surface of which an original document is placed; an optical reading unit that translates between the both ends on a lower surface of the platen glass, for obtaining image data by irradiating an original document surface with light through the platen glass; a control circuit board connected to the optical reading unit, for processing an electric signal; and a housing wherein a side on the side of the other end is thicker than a side on the side of the one end. The image forming apparatus has a cabinet containing: sheet discharge unit for discharging an image formation sheet from a lower-part lower-side on the thicker side of the housing of the optical reading apparatus toward a lower-part upper side on the thinner side of the housing; and a discharge tray on which the image formation sheet discharged from the sheet discharge unit is received and stacked.
Abstract:
According to one embodiment, an image scanning apparatus includes a document table on which an original document is stacked; a substrate; plural first light emitting elements located on one surface of the substrate, the first light emitting elements each emitting light for irradiating the original document on the document table with direct light not reflected by a reflection member; and plural second light emitting elements located on the other surface of the substrate, the second light emitting elements each emitting light for irradiating the original document on the document table with indirect light reflected by the reflection member. The reflection member includes a first reflection member and a second reflection member, and the first reflection member and the second reflection member are located in positions opposed to each other across a reflection optical path of light reflected by the original document on the document table.
Abstract:
According to one embodiment, an image scanning apparatus includes a document glass, a substrate, a first semiconductor light emitting element, a second semiconductor light emitting element, a light guiding section, and a light receiving section. The substrate is provided below and obliquely opposed to the document glass. The first semiconductor light emitting element is mounted on a first surface of the substrate opposed to the document glass and emits light to an original document via the document glass. The second semiconductor light emitting element is mounted on a second surface on the opposite side of the first surface and emits light. The light guiding section receives incidence of the light emitted from the second semiconductor light emitting element and emits the light to the original document from a position where a normal of the document glass is present between the light guide section and the first semiconductor light emitting element.
Abstract:
An image reading apparatus having a color line sensor and a monochromatic line sensor starts to read on the basis of the color reading start position when reading the image of a document in color and starts to read on the basis of the monochromatic reading start position when reading the image of a document in monochrome.
Abstract:
A sheet image scanner of the present invention has plural image sensors to output electric signals by detecting optical image data that are obtained by applying a light from a light source to documents, amplifiers to amplify outputs from the plural image sensors, and a peak detection processing unit to detect a peak value of sensitivity of at least one of the plural image sensors and set a gain value for each of amplifiers for the plural image sensors using the detected peak value.