摘要:
According to one embodiment, a disk drive is provided which corrects already existing offset information according to a variation of a disk runout amount caused by an occurrence of a disk shift. The disk drive effects a head position adjustment at a head positioning control time with the use of offset information stored in a memory. A CPU measures a variation in the disk runout amount and phase caused by an occurrence of a disk shift resulting from an external shock involved and updates the existing offset information with a correction offset information based on a result of measurement.
摘要:
According to one embodiment, a disk drive is provided which corrects already existing offset information according to a variation of a disk runout amount caused by an occurrence of a disk shift. The disk drive effects a head position adjustment at a head positioning control time with the use of offset information stored in a memory. A CPU measures a variation in the disk runout amount and phase caused by an occurrence of a disk shift resulting from an external shock involved and updates the existing offset information with a correction offset information based on a result of measurement.
摘要:
According to one embodiment, a magnetic disk device includes a magnetic disk, a magnetic head, a position error signal output module, a vibration pattern detector, an adder, and a head positioning controller. The magnetic head moves over the magnetic disk. The position error signal output module outputs a position error signal based on a difference between a head position of the magnetic head over the magnetic disk and a target position on the magnetic disk. The vibration pattern detector detects a vibration pattern of the magnetic head caused by vibration. The adder adds the position error signal to an offset signal indicating amplitude of the vibration pattern. The head positioning controller moves the head position to the target position based on a result of addition by the adder.
摘要:
According to one embodiment, a disk drive having a disk, a read head, a servo controller, and a CPU. In the disk, a multi-spiral servo pattern is recorded. The read head reproduces a hexagon-shaped detection signal from the multi-spiral servo pattern. The servo controller generates amplitudes values for respective frames, from the multi-spiral servo pattern. The CPU performs positional-error calculation by using the amplitude values for the frames. Upon detecting a positional change of the head is detected, the CPU performs the positional-error calculation by using the amplitude values generated at the time of replacing the frames with other frames, and corrects the positional error by adding an offset determined from the positional change of the head, to the result of the positional-error calculation.
摘要:
According to one embodiment, there is to provide a disk drive which calculates an error in the position of a head on the basis of concentric servo patterns. The disk drive has a disk medium on which spiral servo patterns are recorded and a read head which reads the spiral servo patterns from the disk medium. A servo controller reproduces a hexagonal burst signal from the spiral servo patterns read by the read head to generate position data associated with servo burst signals. The CPU uses the position data to perform a position error calculation.
摘要:
According to one embodiment, a method of writing a target servo pattern constituting concentric servo tracks on a disk medium provided in a disk drive. In the method, a cumulative amplitude value of the waveform of each spiral servo pattern reproduced by the head of the disk drive is calculated, a slope of each spiral servo pattern is calculated from the cumulative amplitude value, and a pitch at which the head should be moved to write the target servo pattern is determined on the basis of the slopes of the spiral servo patterns.
摘要:
A method of writing servo information for use in head positioning control on a disk medium incorporated in a disk drive, including executing the head positioning control based on original servo information recorded on the disk medium, producing positioning correction information to correct a positioning error, and recording the positioning correction information in a correction information recording buffer.
摘要:
An additive self-servowriting method that records a servo pattern on a disk surface in a disk drive is disclosed. A servowriting method according to the present invention writes an initial servo pattern with a head moved to the inner circumference of the disk at the initial time. Then, additive servowriting operation is performed to write an additive servo pattern with the head positioned in the outer circumferential direction of the disk. When it is impossible to continue the additive servowriting operation in the middle of the operation, the head is set back to the previous additive servo pattern to resume the additive servowriting operation.
摘要:
The magnetic disk apparatus and methods for writing servo data in the magnetic disk drive apparatus detects a relative position between a magnetic head and a writing surface and performs a feedback on the detected relative position for determining the servo data writing position. Based on reference servo patterns that are preliminarily recorded on a portion of at least one surface of the disk, two pairs of head elements, arranged facing respective surfaces of the disk, alternately perform postscript operations of servo patterns while reducing a relative position error between the head and the disk in order to increase writing accuracy of the servo patterns writing operation.
摘要:
A servo system uses a disk on which two pairs of burst data items A and B and burst data items C and D are prerecorded, and the servo system performs positioning control for positioning a head within a range of a track on a disk. The servo system sets a range of a track to be divided into a first area regarding the track center as a reference position, a second area regarding a boundary position between tracks as a reference position, and a third area regarding a middle position between the reference positions, as a reference position. In the first area, the servo system calculates position information of the head by a first calculation formula using the burst data items A and B. In the second area, the servo system calculates position information of the head by a second calculation formula using the burst data items C and D. Further, in the third area, the servo system calculates an average value of calculation results from the first and second calculation formulas, as position information.