摘要:
A manufacturing method for a substrate heating device comprises forming a base plate having a substrate heating surface in which a resistance heating element is buried, forming a tubular member, joining the tubular member to the base plate, measuring temperature distribution in the substrate heating surface by supplying power to the resistance heating element, and grinding the tubular member according to a grinding condition based on a measurement result of the temperature distribution.
摘要:
A manufacturing method for a substrate heating device comprises forming a base plate having a substrate heating surface in which a resistance heating element is buried, forming a tubular member, joining the tubular member to the base plate, measuring temperature distribution in the substrate heating surface by supplying power to the resistance heating element, and grinding the tubular member according to a grinding condition based on a measurement result of the temperature distribution.
摘要:
According to a related art for evaluating the position accuracy of heaters with respect to the plate, it is necessary to attach an energizing electrode to the heaters, and energize the heaters for a predetermined period to heat the entire plate, before measuring the temperature distribution map. Therefore, there is a problem in that several tens of minutes are required until the temperature distribution map can be measured. As the plate becomes larger, the time required for energizing the heaters to heat the entire plate becomes longer. A technique for evaluating the position accuracy of heaters with respect to the plate, without executing a process for energizing the heaters to heat the plate is disclosed.
摘要:
There is provided a susceptor for semiconductor manufacturing apparatus that offers excellent thermal uniformity of a substrate being secured by vacuum chucking. A susceptor for semiconductor manufacturing apparatus includes an aluminum-nitride support member in which heater electrodes are buried to heat the substrate, a recessed wafer pocket formed on an upper surface of the support member, a through hole formed in the wafer pocket, and a seal band that supports the substrate at a periphery of the wafer pocket, and on an upper surface of the seal band, a plurality of gas channels are formed to allow gas in a chamber to pass through the gas channels from an outer circumference of the seal band toward the wafer pocket.
摘要:
There is provided a susceptor for semiconductor manufacturing apparatus that offers excellent thermal uniformity of a substrate being secured by vacuum chucking. A susceptor for semiconductor manufacturing apparatus includes an aluminum-nitride support member in which heater electrodes are buried to heat the substrate, a recessed wafer pocket formed on an upper surface of the support member, a through hole formed in the wafer pocket, and a seal band that supports the substrate at a periphery of the wafer pocket, and on an upper surface of the seal band, a plurality of gas channels are formed to allow gas in a chamber to pass through the gas channels from an outer circumference of the seal band toward the wafer pocket.
摘要:
According to a related art for evaluating the position accuracy of heaters with respect to the plate, it is necessary to attach an energizing electrode to the heaters, and energize the heaters for a predetermined period to heat the entire plate, before measuring the temperature distribution map. Therefore, there is a problem in that several tens of minutes are required until the temperature distribution map can be measured. As the plate becomes larger, the time required for energizing the heaters to heat the entire plate becomes longer. A technique for evaluating the position accuracy of heaters with respect to the plate, without executing a process for energizing the heaters to heat the plate is disclosed.
摘要:
Disclosed is a blast processing method for removing a deposit adhered onto a surface of a ceramic heater formed of aluminum nitride by blowing a blasting material onto the surface. Abrasive grains made of silicon carbide or aluminum oxide and having a grain size of #400 to #800 are used as the blasting material, and a blast pressure as a pressure when the blasting material collides with the surface of the ceramic heater is set at 40 to 150 gf/cm2.
摘要翻译:公开了一种用于通过将喷砂材料吹到表面上去除附着在由氮化铝形成的陶瓷加热器的表面上的沉积物的喷砂处理方法。 使用由碳化硅或氧化铝制成的粒径为#400〜#800的磨粒作为喷砂材料,作为喷砂材料与陶瓷加热器的表面碰撞时的压力的鼓风压力设定为40 至150gf / cm 2。
摘要:
An object of the present invention is to provide a ceramic susceptor for considerably reducing the count number of metal atoms on the surface of a semiconductor after the semiconductor is treated, specifically to 1×1010 atoms/cm2 or lower. It is provided a ceramic susceptor 2 having a face for mounting semiconductor 2a wherein each of metal elements other than metal element(s) constituting the ceramic material has a count number of 1×1011 atoms/cm2 or lower. It is further provided a method of cleaning a ceramic susceptor 2 having a face 2a for mounting semiconductor, wherein the susceptor is cleaned using a complexing agent capable of forming a complex with a metal element.
摘要:
An object of the present invention is to provide a ceramic susceptor for considerably reducing the count number of metal atoms on the surface of a semiconductor after the semiconductor is treated, specifically to 1×1010 atoms/cm2 or lower. It is provided a ceramic susceptor 2 having a face for mounting semiconductor 2a wherein each of metal elements other than metal element(s) constituting the ceramic material has a count number of 1×1011 atoms/cm2 or lower. It is further provided a method of cleaning a ceramic susceptor 2 having a face 2a for mounting semiconductor, wherein the susceptor is cleaned using a complexing agent capable of forming a complex with a metal element.
摘要:
The present invention provides a method for cleaning a ceramic member for use in a system for producing semiconductors. The method has the step of cleaning the ceramic member with an organic acid or a weak acid. Preferably, the ceramic member is cleaned with a strong acid before the cleaning with an organic acid or a weak acid. The ceramic member may be subjected to a blasting treatment before the cleaning with an organic acid or a weak acid. According to the method, the amount of metal transferred from the ceramic member to a semiconductor may be considerably reduced.