Abstract:
A tire includes two beads and a carcass reinforcement anchored in the beads. The carcass reinforcement has at least two circumferential alignments of first reinforcing threads. Each such circumferential alignment is, within each bead, bordered axially inwardly and outwardly by second circumferential reinforcing threads having an elasticity modulus at least equal to that of the first threads. The first and second threads are separated by a rubber mix of high elasticity modulus. The outer surface of each bead includes a seat which includes an arc-shaped wall section having a geometrical center arranged axially outwardly relative to the bead. Considering an imaginary straight line passing through both the center and the bead at an angle α=+45±5 degrees relative to the tire axis, all of the second threads are spaced from that axis by a radial distance no larger than the locus of the imaginary line.
Abstract:
An aircraft tire, the inflation pressure of which is greater than 12 bar, comprises a crown, two sidewalls and two beads, a carcass reinforcement anchored in the two beads and a crown reinforcement. The carcass reinforcement comprises at least two circumferential alignments of first reinforcing threads of high elasticity modulus. The means for anchoring the first reinforcing threads within each bead comprises second reinforcing threads oriented circumferentially and axially bordering the circumferential alignments of the first reinforcing threads, the first reinforcing threads and second reinforcing threads being separated by a layer of mix of very high elasticity modulus.
Abstract:
A tire comprising a crown, two sidewalls and two beads, a carcass reinforcement anchored in each of the beads and a crown reinforcement. The carcass reinforcement comprises at least two circumferential alignments of first reinforcing threads of high elasticity modulus, each circumferential alignment of the first reinforcing threads being, within each bead, bordered axially by second reinforcing threads oriented substantially circumferentially. The first reinforcing threads and the second reinforcing threads are separated by a layer of mix of very high elasticity modulus. The second reinforcements are arranged in a spiral and formed of monofilaments or unit threads of steel.
Abstract:
A tire comprising a crown, two sidewalls and two beads, a carcass reinforcement anchored in each of the beads and a crown reinforcement. The carcass reinforcement comprises at least two circumferential alignments of first reinforcing threads of high elasticity modulus, each circumferential alignment of the first reinforcing threads being, within each bead, bordered axially inwardly and axially outwardly by second reinforcing threads, oriented substantially circumferentially, of a modulus greater than or equal to that of the first reinforcing threads. The first reinforcing threads and second reinforcing threads are separated by a layer of mix of very high elasticity modulus. Considering ΣRI as being the total of the rigidities of extension of the second reinforcing threads arranged axially inwardly relative to the carcass reinforcement and considering ΣRE as being the total of the rigidities of extension of the second reinforcing threads arranged axially on either side of the carcass reinforcement, then: 0.6 ≤ Σ R I Σ R E ≤ 1.5
Abstract:
A tire wherein the reinforcing cords of the carcass, in the part situated between the anchoring zone of the carcass and the sidewall, are in contact with at least one layer of cushion compound having a high modulus of elasticity on the axially outer side and a low modulus of elasticity on the axially inner side and in the sidewall.
Abstract:
A tire wherein the reinforcing cords of the carcass, in the part situated between the anchoring zone of the carcass and the sidewall, are in contact with at least one layer of cushion compound having a high modulus of elasticity on the axially outer side and a low modulus of elasticity on the axially inner side and in the sidewall.
Abstract:
A tire for a vehicle wheel, comprising two sidewalls, a crown zone provided on its radially outer portion with a circumferential tread, and a bead arranged in the radially inner portion of each of the sidewalls. Each bead comprises a seat and an outer flange which are intended to come into contact with the rim, the seat having a generatrix, the axially inner end of which lies on a circle of diameter greater than the diameter of the circle on which the axially outer end is located. A carcass-type reinforcement structure extends substantially radially from each of the beads, along the sidewalls, towards the crown zone. Each bead includes a zone for anchoring the carcass-type reinforcement structure in the bead, a bearing zone for the bead against a suitable rim seat, and an intermediate zone, which is provided substantially between said anchoring zone and the bearing zone.
Abstract:
A tire comprising two beads (20) configured to come into contact with a mounting rim, two sidewalls (30) extending the beads radially to the outside, the two sidewalls being joined together in a crown comprising a crown reinforcement (80, 90) extending axially between two axial ends and surmounted by a tread (40), and a carcass reinforcement (60) comprising a plurality of carcass reinforcing elements (61), the carcass reinforcement being anchored in the two beads and extending across the sidewalls to the crown. The crown comprises, radially on the inside of the tread and radially on the outside of the carcass reinforcement, at least one first layer (111-114) of rubber mix having a modulus of elasticity which is greater than or equal to 50 MPa, this first layer extending from the median plane (150) of the tire axially to the outside, on both sides of the median plane, as far as an axial distance (Dp) from the median plane which is less than the axial distance (Da) from the median plane to the axial end of the crown reinforcement, this first layer being extended axially to the outside, on both sides of the median plane, by a second layer (121-124) of rubber mix having a modulus of elasticity which is less than or equal to 20 MPa.
Abstract:
A tyre for a vehicle wheel comprising two sidewalls, a tread, beads, the sidewall intended to be positioned on the interior side of the vehicle being shorter than that intended to be positioned on the exterior side of the vehicle, a reinforcement structure extending between the beads and maintained in said beads by anchoring zones, each of the beads comprising a specific and distinct arrangement of the anchoring zone thereof, such that the anchoring zone of the bead intended to be positioned on the exterior side of the vehicle exhibits a greater anchoring capacity than the anchoring zone of the bead intended to be on the interior side of the vehicle. The internal and external anchoring zones are thus arranged in such a manner as to produce, in operation, a rim clamping load which is substantially identical on each side.
Abstract:
A tire for a vehicle wheel, comprising two sidewalls joined at their radially outer portions by a crown zone, beads, a reinforcement structure extending substantially radially from each of the beads, towards the crown zone, at least one of said beads comprising: a bead seat of inverted type; an anchoring zone for the reinforcement structure in said bead, comprising an arrangement of circumferential cords comprising at least two stacks distributed on either side of the reinforcement structure, said reinforcement structure being arranged so as to obtain a circumferential distribution of the cords on either side of at least one of said stacks. In this manner, a supplementary adjustment means is obtained which makes it possible to produce arrangements in which the aim is as far as possible towards equilibrium or uniformity of the stresses. Numerous benefits obtained in terms of durability and reliability.