Abstract:
An example method includes identifying a link that is one of a plurality of links of a wireless locating system, the link being defined by at least a reference signal source, a first receiver unit, and a second receiver unit; determining a reliability metric for signal transmission via a link based on first link data, the link data describing first reference signal events for the link; and modifying the reliability metric based on second link data describing second reference signal events for the link, wherein modifying the reliability metric includes: determining whether the second link data is consistent with the first link data; adjusting the reliability metric using a first function when the second link data is consistent with the first link data; and adjusting the reliability metric using a second function different than the first function when the second link data is inconsistent with the second link data.
Abstract:
An example system for locating passive RFID tags includes a narrowband RFID reader configured to transmit a narrowband RF signal to energize a passive RFID tag, thereby causing the passive RFID tag to create a backscatter reflection target; a first wideband transceiver configured to transmit a wideband RF signal; a second wideband transceiver configured to: receive the wideband RF signal reflected from the backscatter reflection target; and record time-of-arrival data for the reflected wideband signal; and processing circuitry configured to determine a location measurement of the passive tag based on the time-of-arrival data.
Abstract:
Systems, methods, apparatuses, and computer readable media are disclosed for providing timing-based distance measurement to a passive radio frequency identification (“RFID”) tag using one or more wideband RF signals synchronized with the standard narrowband RF signal. In some embodiments, the narrowband RF signal activates a passive RFID tag creating a backscatter reflection target which returns a modulated narrowband signal and a wideband signal from the passive RFID tag. The one or more wideband receivers determine time-of-flight and/or time-of-arrival measurements for the returned wideband signal. A location measurement is then calculated for the passive RFID tag using the tag data, the known location of the wideband transceivers, and the time-of-flight/time-of-arrival data.
Abstract:
Systems and methods for determining signal source location in wireless local area networks are disclosed. An example method includes receiving, from a first signal reader, a first time-of-arrival measurement for a first radio frequency (RF) signal generated by a first wireless local area network (WLAN) signal source located at a first known location, the first time-of-arrival measurement being relative to a first clock of the first signal reader; receiving, from a second signal reader, a second time-of-arrival measurement for the RF signal, the second time-of-arrival measurement being relative to a second clock of the second signal reader, wherein the first clock is not synchronized with the second clock; defining a first time relationship between the first clock and a system time based on the first time-of-arrival measurement; and defining a second time relationship between the second clock and the system time based on the second time-of-arrival measurement.
Abstract:
An example method includes identifying a link that is one of a plurality of links of a wireless locating system, the link being defined by at least a reference signal source, a first receiver unit, and a second receiver unit; determining a reliability metric for signal transmission via a link based on first link data, the link data describing first reference signal events for the link; and modifying the reliability metric based on second link data describing second reference signal events for the link, wherein modifying the reliability metric includes: determining whether the second link data is consistent with the first link data; adjusting the reliability metric using a first function when the second link data is consistent with the first link data; and adjusting the reliability metric using a second function different than the first function when the second link data is inconsistent with the second link data.
Abstract:
Systems, methods, apparatuses, and computer readable media are disclosed for providing timing-based distance measurement to a passive radio frequency identification (“RFID”) tag using one or more wideband RF signals synchronized with the standard narrowband RF signal. In some embodiments, the narrowband RF signal activates a passive RFID tag creating a backscatter reflection target which returns a modulated narrowband signal and a wideband signal from the passive RFID tag. The one or more wideband receivers determine time-of-flight and/or time-of-arrival measurements for the returned wideband signal. A location measurement is then calculated for the passive RFID tag using the tag data, the known location of the wideband transceivers, and the time-of-flight/time-of-arrival data.