Abstract:
A transatrial intravascular temperature management catheter has a lower heat exchange segment positionable in the inferior vena cava and an upper heat exchange segment positionable in the superior vane cava, with a connecting segment lying between the two and positionable in the right atrium. A temperature sensor on the distal tip of the upper heat exchange segment provides accurate core body temperature signals for feedback purposes since the blood flowing past the sensor has not yet reached the heat exchange segment.
Abstract:
A catheter has a series of hollow loops arranged along a tube for carrying working fluid from a heat exchange system to exchange heat with a patient in whom the catheter is advanced. The loops when inflated are transverse to the catheter axis and parallel to each other, and circumscribe a hollow passageway through which blood can flow. Blood also flows around the outer perimeters of the loops.
Abstract:
A catheter has an inner sleeve through which refrigerant circulates to and from a source of refrigerant. The catheter also has an outer sleeve surrounding the inner sleeve, including a distal end thereof. The outer sleeve is filled with a frozen biocompatible substance. The refrigerant is separated from the biocompatible substance by one or more walls of the inner sleeve such that the refrigerant is isolated from a patient in whom the catheter is positioned by both the inner sleeve and the frozen biocompatible substance. The refrigerant circulates through the catheter when the catheter is positioned in the patient to maintain the biocompatible substance frozen as heat is transferred from the patient to the biocompatible substance.
Abstract:
An intravascular heat exchange catheter has serpentine-like supply and return conduits circulating working fluid with a heat exchange system to warm or cool a patient in which the catheter is intubated.
Abstract:
A peristaltic pump has an arcuate raceway with a partially concave inner surface extending through an arc of at least one hundred eighty degrees (180°). The arc defines a midpoint, and a rotor faces the inner surface of the raceway and is both rotatable relative to the raceway and translationally movable relative to the raceway between a pump position, wherein the rotor is spaced from the midpoint a first distance, and a tube load position, wherein the rotor is spaced from the midpoint a second distance greater than the first distance. A motor is coupled to the rotor to rotate the rotor plural are rollers arranged on the rotor to contact tubing disposed between the rotor and the raceway when the rotor is in the pump position. The motor is prevented from stopping at a predetermined angular position to facilitate loading and unloading tubing.
Abstract:
A catheter has an inner sleeve through which refrigerant circulates to and from a source of refrigerant. The catheter also has an outer sleeve surrounding the inner sleeve, including a distal end thereof. The outer Sleeve is filled with a frozen biocompatible substance. The refrigerant is separated from the biocompatible substance by one or more walls of the inner sleeve such that the refrigerant is isolated from a patient in whom the catheter is positioned by both the inner sleeve and the frozen biocompatible substance. The refrigerant circulates through the catheter when the catheter is positioned in the patient to maintain the biocompatible substance frozen as heat is transferred from the patient to the biocompatible substance.
Abstract:
A patient temperature control catheter (10) includes working fluid supply (16) and return (18) lumens through which working fluid circulates to exchange heat with a patient in whom the catheter is positioned. At least one lumen is defined by plural coils (32) axially spaced from each other. At least a first coil is a large coil that inflates with working fluid to seat against a wall of a blood vessel in which the catheter is positioned, with blood flowing through the coil so as not to block blood flow in the vessel. Alternate centering structures (116) are disclosed.
Abstract:
A peristaltic pump has an arcuate raceway with a partially concave inner surface extending through an arc of at least one hundred eighty degrees (180°). The arc defines a midpoint, and a rotor faces the inner surface of the raceway and is both rotatable relative to the raceway and translationally movable relative to the raceway between a pump position, wherein the rotor is spaced from the midpoint a first distance, and a tube load position, wherein the rotor is spaced from the midpoint a second distance greater than the first distance. A motor is coupled to the rotor to rotate the rotor plural are rollers arranged on the rotor to contact tubing disposed between the rotor and the raceway when the rotor is in the pump position. The motor is prevented from stopping at a predetermined angular position to facilitate loading and unloading tubing.
Abstract:
A peristaltic pump has an arcuate raceway with a partially concave inner surface extending through an arc of at least one hundred eighty degrees (180°). The arc defines a midpoint, and a rotor faces the inner surface of the raceway and is both rotatable relative to the raceway and translationally movable relative to the raceway between a pump position, wherein the rotor is spaced from the midpoint a first distance, and a tube load position, wherein the rotor is spaced from the midpoint a second distance greater than the first distance. A motor is coupled to the rotor to rotate the rotor plural are rollers arranged on the rotor to contact tubing disposed between the rotor and the raceway when the rotor is in the pump position. The motor is prevented from stopping at a predetermined angular position to facilitate loading and unloading tubing.
Abstract:
An intravascular heat exchange catheter has serpentine-like supply and return conduits circulating working fluid with a heat exchange system to warm or cool a patient in which the catheter is intubated.