Abstract:
Disclosed are a spectrum comb signaling notification and sounding reference signal transmission method and device, wherein the spectrum comb signaling notification method includes: a network side configuring and notifying a receiving side of a two-layer comb spectrum signaling, including a first spectrum comb signaling and a second spectrum comb signaling, wherein the two-layer comb spectrum signaling indicates sub-carrier positions of transmitting the sounding reference signals to the receiving side.
Abstract:
An access method and device for User Equipment (UE) are provided. The method includes: a Physical Random Access Channel (PRACH) resource is selected according to a preset manner, wherein the PRACH resource is one of: a preamble resource, a preamble resource and one or more access time points, a preamble resource and one or more frequency-domain resources, and a preamble and one or more time-frequency resources; and an access is performed by adopting the PRACH resource.
Abstract:
The present invention provides a method and apparatus for determining a scheduling gap, wherein, the method comprises: demodulating the NarrowBand Physical Downlink Control Channel in order to determine the initial subframe of the scheduled NarrowBand Physical Downlink Shared Channel (NB-PDSCH) or the NarrowBand Physical Uplink Shared Channel (NB-PUSCH), wherein, the basis for determining the initial subframe comprises at least one of the following: the final subframe of the NB-PDCCH, the final subframe in the search space where the NB-PDCCH is located, the resource allocation within the scheduling window, and the scheduling gap indication. The implementation of the present technical solutions solves the problem of how to determine the scheduling within the NarrowBand system, thereby saving indication expenditure and improving resource usage efficiency.
Abstract:
The present invention provides a method and apparatus for determining a scheduling gap, wherein, the method comprises: demodulating the NarrowBand Physical Downlink Control Channel in order to determine the initial subframe of the scheduled NarrowBand Physical Downlink Shared Channel (NB-PDSCH) or the NarrowBand Physical Uplink Shared Channel (NB-PUSCH), wherein, the basis for determining the initial subframe comprises at least one of the following: the final subframe of the NB-PDCCH, the final subframe in the search space where the NB-PDCCH is located, the resource allocation within the scheduling window, and the scheduling gap indication. The implementation of the present technical solutions solves the problem of how to determine the scheduling within the NarrowBand system, thereby saving indication expenditure and improving resource usage efficiency.
Abstract:
Provided are signal sending method and apparatus, and a computer storage medium. The method includes: sending a reference signal on an invalid subframe. The method further includes: in a guard band mode, if a downlink timeslot of a special subframe includes N downlink symbols, determining to send the reference signal on the N downlink symbols. The method further includes:mapping and spreading a code word on a preset number of subframes or resource units for sending the mapped and spread code word. The method further includes: sending the reference signal on an orthogonal frequency division multiplexing (OFDM) symbol, where a resource element other than a resource element where the reference signal is located on the OFDM symbol is a muting resource element, and no data is mapped or sent on the muting resource element.
Abstract:
A method and a terminal for uplink power control are disclosed. The method comprising: determining the uplink transmit power by a terminal according to a transmission scenario in which the terminal belongs. In embodiments of present disclosure, uplink transmit power is determined by a terminal for uplink transmission, wherein a scheme of uplink power control is achieved.
Abstract:
Provided are a method and device for sending control information and receiving control information. The method for sending control information comprises repeatedly sending control information within a scheduling period of the control information M times, wherein the scheduling period is the length of N radio frames, N and M are positive integers greater than 1, and N is greater than or equal to M. The disclosure solves the technical problem in the related art that control information cannot be correctly received in a low-coverage environment and thus a terminal cannot normally access a network, achieving the technical effect of accurately receiving the control information so as to ensure that the network can be accessed normally.