摘要:
Branches are grouped into a group 1 including first and second branches, and a group 2 including third and fourth branches. The signal after being passed through a dual pin photodiode in one branch included in the group 1 and being at the earlier stage of a CDR circuit is obtained. Also, from the later stage of the CDR circuit in the other branch in the group 1 is obtained. The obtained signals are passed through low pass filters, and an average value over a plurality of symbols is obtained. The signal from the earlier stage of the CDR circuit is multiplied by the signal from the later stage, and they are averaged. The obtained value reflects the phase difference of the two delay interferometers in the group 1. The group 2 is monitored by using the same method.
摘要:
I branch is provided with a first interferometer, a first balanced optical detector, and a first data recovery circuit. Q branch is provided with a second interferometer, a second balanced optical detector and a second data recovery circuit. In I branch, a mixer multiples input signal of the first data recovery circuit with output signal of the second recovery circuit. An averaging circuit averages output signal of the mixer. In Q branch, a mixer multiples input signal of the second data recovery circuit with output signal of the first recovery circuit. An averaging circuit averages output signal of the mixer. A first phase control apparatus controls the phase of a phase shifter comprised in the first interferometer based on the output signal of the averaging circuit. A second phase control apparatus, in the same manner, controls the phase of a phase shifter comprised in the second interferometer.
摘要:
Branches are grouped into a group 1 including first and second branches, and a group 2 including third and fourth branches. The signal after being passed through a dual pin photodiode in one branch included in the group 1 and being at the earlier stage of a CDR circuit is obtained. Also, from the later stage of the CDR circuit in the other branch in the group 1 is obtained. The obtained signals are passed through low pass filters, and an average value over a plurality of symbols is obtained. The signal from the earlier stage of the CDR circuit is multiplied by the signal from the later stage, and they are averaged. The obtained value reflects the phase difference of the two delay interferometers in the group 1. The group 2 is monitored by using the same method.
摘要:
I branch is provided with a first interferometer, a first balanced optical detector, and a first data recovery circuit. Q branch is provided with a second interferometer, a second balanced optical detector and a second data recovery circuit. In I branch, a mixer multiples input signal of the first data recovery circuit with output signal of the second recovery circuit. An averaging circuit averages output signal of the mixer. In Q branch, a mixer multiples input signal of the second data recovery circuit with output signal of the first recovery circuit. An averaging circuit averages output signal of the mixer. A first phase control apparatus controls the phase of a phase shifter comprised in the first interferometer based on the output signal of the averaging circuit. A second phase control apparatus, in the same manner, controls the phase of a phase shifter comprised in the second interferometer.
摘要:
The optical node connects N networks to each other (where N is an integer larger than one). Each of the N networks respectively includes a first transmission path and a second transmission path. The optical node includes a switching unit that connects the first transmission path of one network of the N networks to other (N−1) networks; a failure detector that detects failure in the first transmission path of the network; and a control unit that causes the switching unit to connect the second transmission path of the network to the other (N−1) networks when the failure is detected.
摘要:
An optical add/drop multiplexer includes a first optical coupler receiving an optical signal including a plurality of multiplexed wavelengths, a wavelength blocker receiving the optical signal from the first optical coupler, and blocking at least one wavelength of the plurality of multiplexed wavelengths, a first wavelength selective switch, having one input port receiving the outputted optical signal from the first optical coupler and a plurality of output ports, demultiplexing a plurality of arbitrarily selected multiplexed wavelengths from the received optical signal, a second wavelength selective switch, having a plurality of input ports, each input port receiving a different optical signal and one output port, multiplexing a plurality of arbitrarily selected wavelength signals on the plurality of input ports, and a second optical coupler receiving the optical signal output from the wavelength blocker and multiplexed wavelength signal from the second wavelength selective switch.
摘要:
An optical add/drop multiplexer includes a first optical coupler receiving an optical signal including a plurality of multiplexed wavelengths, a wavelength blocker receiving the optical signal from the first optical coupler, and blocking at least one wavelength of the plurality of multiplexed wavelengths, a first wavelength selective switch, having one input port receiving the outputted optical signal from the first optical coupler and a plurality of output ports, demultiplexing a plurality of arbitrarily selected multiplexed wavelengths from the received optical signal, a second wavelength selective switch, having a plurality of input ports, each input port receiving a different optical signal and one output port, multiplexing a plurality of arbitrarily selected wavelength signals on the plurality of input ports, and a second optical coupler receiving the optical signal output from the wavelength blocker and multiplexed wavelength signal from the second wavelength selective switch.
摘要:
By comprising a unit 2 making the adjustment related to degradation compensation of a plurality of signals with each wavelength made after multiplexing the signals, a unit 3 multiplexing the outputs of a plurality of units 2, a unit 4 compensating for the waveform degradation of the output of the unit 3, a unit 5 selecting a component with one of a plurality of wavelengths from a part of the output of the unit 4 and a unit 6 detecting the degree of signal degradation from the output of the unit 5 and controlling the adjustment by the unit 2 corresponding to the selected frequency so as to reduce the degree, components disposed for each wavelength in an optical transmission system adopting a wavelength-division multiplexing method can be shared, and the size and cost of an compensator can be reduced.
摘要:
An optical add/drop multiplexer includes a first optical coupler receiving an optical signal including a plurality of multiplexed wavelengths, a wavelength blocker receiving the optical signal from the first optical coupler, and blocking at least one wavelength of the plurality of multiplexed wavelengths, a first wavelength selective switch, having one input port receiving the outputted optical signal from the first optical coupler and a plurality of output ports, demultiplexing a plurality of arbitrarily selected multiplexed wavelengths from the received optical signal, a second wavelength selective switch, having a plurality of input ports, each input port receiving a different optical signal and one output port, multiplexing a plurality of arbitrarily selected wavelength signals on the plurality of input ports, and a second optical coupler receiving the optical signal output from the wavelength blocker and multiplexed wavelength signal from the second wavelength selective switch.
摘要:
A coherent optical receiver includes; a multiplexing section that multiplexes local oscillation light and received signal light, and outputs two pairs of lights with optical phases different to each other, a photoelectric converting section that executes differential photoelectric converting to convert the output lights from the multiplexing section into electric signals, an AD converting section that converts the respective electric signals output from the photoelectric converting section into digital signals, a digital signal processing section that compensates wavelength dispersion by subjecting the digital signals converted by the AD converting section to arithmetic processing using a digital filter, and then executes reception processing of data included in the received signal light, a monitoring section that monitors an intensity component in a predetermined band of the electric signals output from the photoelectric converting section, and a tap coefficient adjusting section that determines a tap coefficient of the digital filter according to a monitoring result obtained by the monitoring section.