摘要:
A functionally graded cemented tungsten carbide material produced via heat treating a sintered cemented tungsten carbide is disclosed and described. The heat treating process comprises at least a step that heats the sintered material to the multi-phase temperature range in which multiple phases including solid tungsten carbide, liquid metal binder, and solid metal binder coexist. Additionally, the material, after the heat treating process comprises a surface layer with lower metal binder content than the nominal value of metal binder content of the bulk of the material. The material is used to make tools for rock drilling, machining of metal alloys, and machining of non-metallic materials. The material can also be used to make engineered wear parts that are used in mechanical systems and applications where wear resistance is required or desired.
摘要:
A method of preparing a functionally graded cemented tungsten carbide material via heat treating a sintered cemented tungsten carbide is disclosed and described. The heat treating process comprises at least a step that heats the sintered material to the multi-phase non-equilibrium temperature range in which multiple phases including solid tungsten carbide, liquid metal binder, and solid metal binder coexist. Additionally, the material, after the heat treating process comprises a surface layer with lower metal binder content than the nominal value of metal binder content of the bulk of the material.
摘要:
A functionally graded cemented tungsten carbide material produced via heat treating a sintered cemented tungsten carbide is disclosed and described. The heat treating process comprises at least a step that heats the sintered material to the multi-phase temperature range in which multiple phases including solid tungsten carbide, liquid metal binder, and solid metal binder coexist. Additionally, the material, after the heat treating process comprises a surface layer with lower metal binder content than the nominal value of metal binder content of the bulk of the material. The material is used to make tools for rock drilling, machining of metal alloys, and machining of non-metallic materials. The material can also be used to make engineered wear parts that are used in mechanical systems and applications where wear resistance is required or desired.
摘要:
A method of preparing a functionally graded cemented tungsten carbide material via heat treating a sintered cemented tungsten carbide is disclosed and described. The heat treating process comprises at least a step that heats the sintered material to the multi-phase non-equilibrium temperature range in which multiple phases including solid tungsten carbide, liquid metal binder, and solid metal binder coexist. Additionally, the material, after the heat treating process comprises a surface layer with lower metal binder content than the nominal value of metal binder content of the bulk of the material.
摘要:
A light metal solid solution alloy for reversible hydrogen storage can include a light metal solid solution alloy of M1 and M2. M1 and M2 are different and independently selected from the group consisting of Li, Mg, Al, Na, Be, and Si. Furthermore, the starting materials and formation conditions are chosen such that the resulting alloy has a hydrogenated state and a dehydrogenated state which are each solid solutions.
摘要:
The present disclosure provides compositions and methods directed to polycrystalline diamond materials. In one embodiment, a polycrystalline diamond material can comprise sintered polycrystalline diamond and a binder alloy, where the binder alloy is a liquid at a sintering temperature of the polycrystalline diamond, forms an intermetallic compound at a low temperature below the sintering temperature, and is substantially all intermetallic phase.
摘要:
A polycrystalline abrasive composite cutter, including a tool body with a top cutting surface and a flank surface. The composite cutter, joined to a substrate, constitute a shear cutter for a PDC bit, roller-cone bit insert, or other tool that can be highly useful for petroleum drilling or other applications. The body of the polycrystalline abrasive composite cutter includes a plurality of polycrystalline abrasive layers (90) and a plurality of arresting layers (100). The polycrystalline abrasive layers (90) and the arresting layers (100) are arranged to alternate throughout the tool body in a direction normal to the top cutting surface (92) and in a direction normal to a flank surface (94).
摘要:
A polycrystalline abrasive composite cutter, including a tool body with a top cutting surface and a flank surface. The composite cutter, joined to a substrate, constitute a shear cutter for a PDC bit, roller-cone bit insert, or other tool that can be highly useful for petroleum drilling or other applications. The body of the polycrystalline abrasive composite cutter includes a plurality of polycrystalline abrasive layers (90) and a plurality of arresting layers (100). The polycrystalline abrasive layers (90) and the arresting layers (100) are arranged to alternate throughout the tool body in a direction normal to the top cutting surface (92) and in a direction normal to a flank surface (94). According to the design, the arresting layers (100) can be oriented so as to substantially arrest crack propagation through the polycrystalline abrasive material.