Abstract:
A color measurement device designed for use at various stages of an industrial process is provided. The device offers enhanced insensitivity to ambient light, measurement depth variations, and/or ambient or environmental temperature variations. The device may be embodied as an LED-based, non-contact color measurement spectrophotometer. Over-illumination in full-spectrum of the target object facilitates effective color measurements over varying depths of view. Collected light is measured at discrete wavelengths across the entire visual spectrum. The hardened, rugged design and packaging of the measurement device allows color measurement to be performed at various stages of industrial processes wherein the device can add value by enabling enhanced detection of color errors.
Abstract:
A color measurement device designed for use at various stages of an industrial process is provided. The device offers enhanced insensitivity to ambient light, measurement depth variations, and/or ambient or environmental temperature variations. The device may be embodied as an LED-based, non-contact color measurement spectrophotometer. Over-illumination in full-spectrum of the target object facilitates effective color measurements over varying depths of view. Collected light is measured at discrete wavelengths across the entire visual spectrum. The hardened, rugged design and packaging of the measurement device allows color measurement to be performed at various stages of industrial processes wherein the device can add value by enabling enhanced detection of color errors.
Abstract:
An apparatus and system for providing a solution that enables technicians or other technical professionals obtain both an accurate color value for a sample as well as an accurate gloss value while using a spectrophotometer and an integrated gloss meter device. The present invention allows for accurate color and gloss value analysis of samples using improved compensation values by using a reference sensor to correct the variations in intensity of a light source.
Abstract:
A spectral interleaver providing flat top spectral transmission passbands and athermal operation is disclosed. The spectral interleaver may comprise a pentagon-shaped birefringent crystal, a polarization beam splitter, and a dielectric mirror at one facet of the crystal. Prisms and polarizing beam splitters can be employed for operation with an unpolarized input beam. The cavity formed by the mirror and the crystal serves as a spectrally dispersive mirror. Front mirror reflectivity is provided by the air-crystal (or other medium-crystal) interface. Proper mirror reflectivities can be achieved by selecting the angle θ of the pentagon-shape crystal. By selecting the proper air space between the mirror and the crystal surface and the crystal length, the interleaver can have a flat top transmission function. A combination of two different crystals which exhibit different thermal-optic effects may be employed such that the total phase retardation is independent of the temperature, leading to athermal operation.
Abstract:
Multi-stage, all-pass optical filters used to make low-loss, multi-channel dispersion compensation modules are disclosed. The all-pass optical filters can be ring resonators in waveguides, Gires-Tournois Interferometers (GTIs) in free space form, and the like. The coupling constants and circulating path lengths may also be distinctively varied in each of the series of GTIs, tuning the net dispersion spectrum of the GTI set, such that the sum of the dispersions from the series of GTI's can provide a system with greater bandwidth than the same number of identical GTIs. The local dispersion slope can also be tuned in this manner. Multi-cavity GTIs can also be formed with similar performance enhancing properties.
Abstract:
An apparatus and system for providing a solution that enables technicians or other technical professionals obtain an accurate color value for a sample regardless of the reflectance properties. The present invention allows for the generation of high precision reflectance information using improved composite measurements.
Abstract:
An apparatus and system for providing a solution that enables technicians or other technical professionals obtain both an accurate color value for a sample as well as an accurate gloss value while using a spectrophotometer and an integrated gloss meter device. The present invention allows for accurate color and gloss value analysis of samples using improved compensation values by using a reference sensor to correct the variations in intensity of a light source.
Abstract:
One embodiment of a method for aligning measurements taken by a plurality of color measurement instruments with measurements taken by an industry standard color measurement instrument includes receiving a first set of spectral data from the plurality of instruments, receiving a second set of spectral data from the industry standard instrument, generating initial profiles for the plurality of instruments (by producing, for each given instrument, a first correction that aligns the spectral data taken by the given instrument with the second set of spectral data), mathematically correcting the first set of spectral data using the initial profiles to produce a third set of spectral data, and generating new profiles for the plurality of instruments (by calculating a mean of the third set of spectral data, and producing, for each given instrument, a second correction that aligns the spectral data taken by the given instrument with the mean.
Abstract:
One embodiment of a method for aligning measurements taken by a plurality of color measurement instruments with measurements taken by an industry standard color measurement instrument includes receiving a first set of spectral data from the plurality of instruments, receiving a second set of spectral data from the industry standard instrument, generating initial profiles for the plurality of instruments (by producing, for each given instrument, a first correction that aligns the spectral data taken by the given instrument with the second set of spectral data), mathematically correcting the first set of spectral data using the initial profiles to produce a third set of spectral data, and generating new profiles for the plurality of instruments (by calculating a mean of the third set of spectral data, and producing, for each given instrument, a second correction that aligns the spectral data taken by the given instrument with the mean.