摘要:
A method for determining an improved position fix by performing postprocessing on a realtime differentially corrected GPS position. A remote rover unit containing a GPS receiver is used to determine a differentially corrected position according to measured pseudoranges and realtime pseudorange correction vectors is broadcast by a base station. The rover unit applies realtime corrections to measurements to determine a more accurate realtime differential position. It then stores the realtime differential position and the realtime pseudorange correction vector. Subsequently, postprocessing is performed to determine a postprocessed pseudorange correction vector. A difference vector representing the difference between the realtime pseudorange correction vector and the postprocessed pseudorange correction vector is then determined. This difference vector is applied to the realtime differential position to calculate a more accurate, improved position fix. This same process can be applied to determine velocities as well.
摘要:
A method for determining an improved position fix by performing postprocessing on a realtime differentially corrected GPS position. A remote rover unit containing a GPS receiver is used to determine a differentially corrected position according to measured pseudoranges and realtime pseudorange correction vectors is broadcast by a base station. The rover unit applies realtime corrections to measurements to determine a more accurate realtime differential position. It then stores the realtime differential position and the realtime pseudorange correction vector. Subsequently, postprocessing is performed to determine a postprocessed pseudorange correction vector. A difference vector representing the difference between the realtime pseudorange correction vector and the postprocessed pseudorange correction vector is then determined. This difference vector is applied to the realtime differential position to calculate a more accurate, improved position fix. This same process can be applied to determine velocities as well.
摘要:
An apparatus and method for interference cancellation using software or low speed hardware. Antenna signals are received and selected. After selection, interference cancellation processing is applied. In one embodiment, the signal is a spread spectrum signal and selection includes despreading the signal. In one example, the interference cancellation processing includes a phase rotation step and a magnitude manipulation step.
摘要:
A system for maintaining time in a satellite positioning system (SPS) receiver that relies on almanac data to maintain a reasonably accurate time. The approximate time based on almanac data is sufficiently accurate to bound the unknown parameters when a request for position is received. The receiver may automatically update the internal time and/or position. When a time update is required, the approximate time based on almanac data is sufficiently accurate that the receiver need only acquire the code phase from the satellites and can internally determine the code period into the bit and the bit into the week based on the almanac data.
摘要:
Method and apparatus to implement a “virtual” real-time clock at a terminal based on time information from multiple communication systems. At least one system (e.g., GPS) provides “absolute” time information for the virtual real-time clock, and at least one other system (e.g., a cellular system) provides “relative” time information. The virtual real-time clock is “time-stamped” with absolute time as it becomes available from the first system. Relative time (which may be received from multiple asynchronous transmitters) is mapped to the timeline of the virtual real-time clock as it is received from the second system. Absolute time at any arbitrary time instant on the timeline may then be estimated based on the absolute time from the first system and the relative time from the second system. Absolute times from the first system for two or more time instants may also be used to calibrate the relative time from the second system.
摘要:
Method and apparatus for using a plurality of correlators to improve an estimate of direct signal arrival time by identifying features of a correlation function at and adjacent to the correlation peak. In a first embodiment, the errors in location of the center point of a correlation function R(.tau.), formed by the incoming composite signal and a stored copy of the expected signal, are assumed to be strongly correlated for narrow sample spacing and wide sample spacing of the correlation function. In a second embodiment, multipath signal strengths and phases are estimated, using multiple sampling of the correlation function R(.tau.). This approach assumes that path delays of the direct signal and of the multipath signals can be determined separately. Path delays can be determined by any of at least three approaches: (1) identification of slope transition points in the correlation function; (2) Cepstrum processing of the received signal, using Fourier transform analysis; and (3) use of a grid of time points on the correlation function domain, and identification of time values, associated with certain solution parameters of the least mean squares analysis that have the largest absolute values, as times of arrival of the direct and multipath signals. Separate identification of multipath time delays reduces the least mean squares analysis to a linear problem. A modified signal is constructed, with the multipath signal(s) approximately removed from the incoming composite signal. This modified signal allows a better estimate of the arrival time of the direct signal.
摘要:
Method and apparatus for reducing or cancelling impulse noise from a signal containing noise. The desired noise-free signal is assumed to have a representative frequency .omega..sub.3, but may have a range of frequencies adjacent to this frequency, and is assumed to have substantially zero amplitude for all frequencies .omega. .omega..sub.2, where .omega..sub.1
摘要:
A mobile station database of cellular identifications and associated position information is stored in mobile station memory. The mobile station uses the position information in the database to assist in determining a current position for the mobile based on an identifier, such as cell ID, base station BSIC, PSC, or carrier frequency. A satellite vehicle signal is searched in an uncertainty region that is a function of position information associated with the current identifier. The uncertainty region can be limited by assumed platform dynamics via predefined velocity and acceleration information. Time maintenance for the mobile station can also be achieved through known approximate position from the position database and measurement of a single satellite vehicle propagation delay. The mobile station can compare a position determination obtained through satellite vehicle signals with position database information to determine the validity of that position. Out-of-network position information is also stored in the position database and is optionally shared with a network.
摘要:
A system for maintaining time in a satellite positioning system (SPS) receiver that relies on almanac data to maintain a reasonably accurate time. The approximate time based on almanac data is sufficiently accurate to bound the unknown parameters when a request for position is received. The receiver may automatically update the internal time and/or position. When a time update is required, the approximate time based on almanac data is sufficiently accurate that the receiver need only acquire the code phase from the satellites and can internally determine the code period into the bit and the bit into the week based on the almanac data.
摘要:
Method and apparatus for using a plurality of correlators to improve the estimate of direct signal arrival time by identifying detailed features of a correlation function at and adjacent to the correlation peak. The errors in location of the center point of a correlation function R(.tau.), formed by the received signal and a stored copy of the expected signal, are assumed to be strongly correlated for narrow sample spacing and wide sample spacing of the correlation function. Alternatively, the multipath signal strengths and phases are estimated by a least mean squares analysis, using multiple sampling of a correlation function of an expected signal and an arriving composite signal that includes the direct signal and one or more multipath signals. Times of arrival or path delays of the direct signal and the multipath signals are determined separately. Path delays can be determined by at least three approaches: (1) identification of slope transition points in the correlation function R(.tau.); (2) Cepstrum processing of the received signal, using Fourier transform and inverse transform analysis; and (3) use of a grid of time shift points for the correlation function, and identification of time shift values, associated with certain solution parameters for a least mean squares analysis that have the largest absolute values, as times of arrival of the direct and multipath signals. Separate identification of path delays reduces the least mean squares analysis to a solvable linear problem. A modified received signal is constructed, with multipath signal(s) approximately removed.