摘要:
Methods of making unsaturated modified vegetable oil-based polyols are described. Also described are methods of making oligomeric modified vegetable oil-based polyols. An oligomeric composition having a modified fatty acid triglyceride structure is also described. Also, methods of making a polyol including hydroformylation and hydrogenation of oils in the presence of a catalyst and support are described.
摘要:
Methods of making unsaturated modified vegetable oil-based polyols are described. Also described are methods of making oligomeric modified vegetable oil-based polyols. An oligomeric composition having a modified fatty acid triglyceride structure is also described. Also, methods of making a polyol including hydroformylation and hydrogenation of oils in the presence of a catalyst and support are described.
摘要:
Methods of making unsaturated modified vegetable oil-based polyols are described. Also described are methods of making oligomeric modified vegetable oil-based polyols. An oligomeric composition having a modified fatty acid triglyceride structure is also described. Also, methods of making a polyol including hydroformylation and hydrogenation of oils in the presence of a catalyst and support are described.
摘要:
A vegetable oil-based polyol is made by adding a peroxyacid to vegetable oil wherein said peroxyacid reacts with said vegetable oil to form epoxidized vegetable oil and adding said epoxidized vegetable oil to a mixture of an alcohol, water, and a catalytic amount of fluoboric acid so as to form a vegetable oil-based polyol. A further embodiment of the present invention involves making a vegetable oil-based polyol using an epoxidized vegetable oil as the starting material. The epoxidized vegetable oil undergoes hydroxylation by the same process as outlined above. According to another aspect of the present invention, the vegetable oil-based polyol formed by the novel methods of this invention may be reacted with an isocyanate to form a polyurethane. Alternatively, a filler such as silica may be combined with the vegetable oil-based polyol before it is reacted with the isocyanate. These polyurethanes made from vegetable oil-based polyols may be used to form electroinsulating casting resins.
摘要:
A vegetable oil-based polyol is made by adding a peroxyacid to vegetable oil wherein said peroxyacid reacts with said vegetable oil to form epoxidized vegetable oil and adding said epoxidized vegetable oil to a mixture of an alcohol, water, and a catalytic amount of fluoboric acid so as to form a vegetable oil-based polyol. A further embodiment of the present invention involves making a vegetable oil-based polyol using an epoxidized vegetable oil as the starting material. The epoxidized vegetable oil undergoes hydroxylation by the same process as outlined above. According to another aspect of the present invention, the vegetable oil-based polyol formed by the novel methods of this invention may be reacted with an isocyanate to form a polyurethane. Alternatively, a filler such as silica may be combined with the vegetable oil-based polyol before it is reacted with the isocyanate. These polyurethanes made from vegetable oil-based polyols may be used to form electroinsulating casting resins.
摘要:
A method for making natural oil-based polyols directly from vegetable or animal oil using a consecutive two-step process involving epoxidation and hydroxylation is provided. Specifically, this process comprises adding a peroxyacid to a natural oil wherein said natural oil and said peroxyacid react to form an epoxidized natural oil and adding said epoxidized natural oil to a mixture of an alcohol, water, and a fluoboric acid catalyst. The catalytic amount of fluoboric acid is less than about 0.5% by weight of the entire reaction mixture, and the amount of water is about 10 to 30% by weight of the entire mixture. The epoxidized natural oil undergoes hydroxylation and forms a natural oil-based polyol. The present invention further includes a method for making natural oil-based polyols from epoxidized oil by hydroylating the epoxidized oil in the presence of fluoboric acid, alcohol and water in the amounts discussed above. The natural oil-based polyols created by this method may be reacted with isocyanates so as to form polyurethanes, which is another embodiment of the present invention. Alternatively, fillers such as silica may be combined with these natural oil-based polyols before they are reacted with isocyanates to form polyurethanes. In still another embodiment of the present invention, polyurethanes made from natural oil-based polyols may be used to form electroinsulating casting resins for use in electrical applications.
摘要:
A method for making natural oil-based polyols directly from vegetable or animal oil using a consecutive two-step process involving epoxidation and hydroxylation is provided. Specifically, this process comprises adding a peroxyacid to a natural oil wherein said natural oil and said peroxyacid react to form an epoxidized natural oil and adding said epoxidized natural oil to a mixture of an alcohol, water, and a fluoboric acid catalyst. The catalytic amount of fluoboric acid is less than about 0.5% by weight of the entire reaction mixture, and the amount of water is about 10 to 30% by weight of the entire mixture. The epoxidized natural oil undergoes hydroxylation and forms a natural oil-based polyol. The present invention further includes a method for making natural oil-based polyols from epoxidized oil by hydroylating the epoxidized oil in the presence of fluoboric acid, alcohol and water in the amounts discussed above. The natural oil-based polyols created by this method may be reacted with isocyanates so as to form polyurethanes, which is another embodiment of the present invention. Alternatively, fillers such as silica may be combined with these natural oil-based polyols before they are reacted with isocyanates to form polyurethanes. In still another embodiment of the present invention, polyurethanes made from natural oil-based polyols may be used to form electroinsulating casting resins for use in electrical applications.
摘要:
A method for producing a polyester polyol is disclosed. The method comprises reacting phthalic anhydride with a diol selected from the group consisting of ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 1,6-hexanediol, polyethylene glycols having a number average molecular weight within the range of 200 g/mol to 600 g/mol, and mixtures thereof at a diol to phthalic anhydride molar ratio within the range of 1.1 to 1.6. The resulting o-phthalate polyester polyol has a hydroxyl value in the range of 18 to 400 mg KOH/g, an acid value in the range of 0.2 to 5.0 mg KOH/g, and 1 wt. % or less of cyclic esters.
摘要:
A method for producing a polyester polyol is disclosed. The method comprises reacting phthalic anhydride with a diol selected from the group consisting of ethylene glycol, propylene glycol, 1,3-propanediol, 2-meth-1,3-propanediol, neopentyl glycol, 1,6-hexanediol, polyethylene glycols having a number average molecular weight within the range of 200 g/mol to 600 g/mol, and mixtures thereof at a diol to phthalic anhydride molar ratio within the range of 1.1 to 1.6. The resulting o-phthalate polyester polyol has a hydroxyl value in the range of 18 to 400 mg KOH/g, an acid value in the range of 0.2 to 5.0 mg KOH/g, and 1 wt. % or less of cyclic esters.