摘要:
A method and a storage system are provided for implementing a sustained large block random write performance mechanism for shingled magnetic recording (SMR) drives in a redundant array of inexpensive disks (RAID). A Solid State Drive (SSD) is provided with the SMR drives in the RAID. The SSD is used in a hot spare mode, which is activated when a large block random-write event is identified for a SMR drive in the RAID. In the hot spare mode, the SSD temporarily receives new incoming writes for the identified SMR drive. Then the identified SMR drive is updated from the SSD to restore the state of the identified SMR drive, and operations continue with normal writing only using the SMR drives in the RAID.
摘要:
A method and a storage system are provided for implementing a sustained large block random write performance mechanism for shingled magnetic recording (SMR) drives in a redundant array of inexpensive disks (RAID). A Solid State Drive (SSD) is provided with the SMR drives in the RAID. The SSD is used in a hot spare mode, which is activated when a large block random-write event is identified for a SMR drive in the RAID. In the hot spare mode, the SSD temporarily receives new incoming writes for the identified SMR drive. Then the identified SMR drive is updated from the SSD to restore the state of the identified SMR drive, and operations continue with normal writing only using the SMR drives in the RAID.
摘要:
A shingled magnetic recording hard disk drive that uses writeable cache tracks in the inter-band gaps between the annular data bands minimizes the effect of far track erasure (FTE) in the boundary regions of annular data bands caused by writing to the cache tracks. Based on the relative FTE effect for all the tracks in a range of tracks of the cache track being written, a count increment (CI) table or a cumulative count increment (CCI) table is maintained. For every writing to a cache track, a count for each track in an adjacent boundary region, or a cumulative count for each adjacent boundary region, is increased. When the count value for a track, or the cumulative count for a boundary region, reaches a predetermined threshold the data is read from that band and rewritten to the same band.
摘要:
A shingled magnetic recording (SMR) hard disk drive (HDD) essentially eliminates the effect of far track erasure (FTE) in the boundary regions of annular data bands caused by writing in the boundary regions of adjacent annular data bands. The extent of the FTE effect is determined for each track within a range of tracks of the track being written. Based on the relative FTE effect for all the tracks in the range, a count increment (CI) table or a cumulative count increment (CCI) table is maintained for all the tracks in the range. For every writing to a track in a boundary region, a count for each track in an adjacent boundary region, or a cumulative count for the adjacent boundary region, is increased. When the count reaches a predetermined threshold the data is read from that band and rewritten to the same band.
摘要:
A shingled magnetic recording hard disk drive that uses writeable cache tracks in the inter-band gaps between the annular data bands minimizes the effect of far track erasure (FTE) in the boundary regions of annular data bands caused by writing to the cache tracks. Based on the relative FTE effect for all the tracks in a range of tracks of the cache track being written, a count increment (CI) table or a cumulative count increment (CCI) table is maintained. For every writing to a cache track, a count for each track in an adjacent boundary region, or a cumulative count for each adjacent boundary region, is increased. When the count value for a track, or the cumulative count for a boundary region, reaches a predetermined threshold the data is read from that band and rewritten to the same band.
摘要:
A shingled magnetic recording (SMR) hard disk drive (HDD) essentially eliminates the effect of far track erasure (FTE) in the boundary regions of annular data bands caused by writing in the boundary regions of adjacent annular data bands. The extent of the FTE effect is determined for each track within a range of tracks of the track being written. Based on the relative FTE effect for all the tracks in the range, a count increment (CI) table or a cumulative count increment (CCI) table is maintained for all the tracks in the range. For every writing to a track in a boundary region, a count for each track in an adjacent boundary region, or a cumulative count for the adjacent boundary region, is increased. When the count reaches a predetermined threshold the data is read from that band and rewritten to the same band.
摘要:
ICC-NCQ priority and deadline information in conjunction with an estimation of command access time that is specific to SMR drives are used improve command queue optimization. Estimated completion times are determined based on the internal subcommands that the drive has to execute to complete the host read or write command taking into account whether all or part of the data will be or already is stored in write-twice cache, E-region and/or I-region. The command processor selects the next command for execution based on calculated access times with adjusted priority based on the specified deadline for the command. As the deadline approaches, the priority of the command increases. For high priority data writes as specified by a host, an optimized storage plan is selected as appropriate using the “write-twice cache” (WTC) region, E-region or I-region.
摘要:
Approaches are provided for a hard-disk drive (HDD) and techniques for using multiple LUNs per HDD where each LUN is mapped to a head/disk interface. In one example, a HDD generates multiple LUNs and assigns each to a single head, such that data written by a first head is only associated to a first LUN, and so forth.
摘要:
A method and apparatus are provided for implementing enhanced data partial erase for multi-level cell (MLC) memory using threshold-voltage-drift or resistance-drift tolerant moving baseline memory data encoding. A data partial erase for data written to the MLC memory using threshold-voltage-drift or resistance-drift tolerant moving baseline memory data encoding is performed, and a data re-write after the partial erase to the MLC memory is performed using threshold-voltage-drift or resistance-drift tolerant moving baseline memory data encoding. A data partial erase cycle includes a duration and voltage level based upon a degradation of the MLC memory cells.
摘要:
Secure timestamps created by a data storage device are described. Metadata timestamp is created for each recorded unit of data (such as a sector) The HDD performs the time-stamping in a secure manner. The timestamp is made secure by performing a secure operation (i.e. one that can only be performed by the HDD) using the data and timestamp. The secure operation uses a secure key that is built-in to the storage device and is not readable outside of the device. In some embodiments the secure operation is encryption using the secure key. In other embodiments the secure operation is a hash code function (such as a Hash-based Message Authentication Code (HMAC) function) that uses the secure key to generate a hash code using at least the recorded data and the timestamp as input. The hash code is then included in the metadata that is recorded for the data unit.