Abstract:
An electronic torch is disclosed which includes at least one light emitting diode disposed in each one of a plurality of sections of the electronic torch. In one embodiment, each one of the plurality of sections of the electronic torch is independently selectable to activate the at least one light emitting diode disposed in each one of the plurality of sections of the electronic torch. In another embodiment, a mobile device may be connected to the electronic torch and provide instructions to the torch via a wired or wireless connection.
Abstract:
An electronic torch is disclosed which includes at least one light emitting diode disposed in each one of a plurality of sections of the electronic torch. In one embodiment, each one of the plurality of sections of the electronic torch is independently selectable to activate the at least one light emitting diode disposed in each one of the plurality of sections of the electronic torch. In another embodiment, a mobile device may be connected to the electronic torch and provide instructions to the torch via a wired or wireless connection.
Abstract:
In one embodiment, a direct current bus is disclosed. The direct current bus is a four conductor bus and comprises a positive voltage conductor, a neutral conductor, a negative voltage conductor, and a safety ground. The direct current bus may be implemented in a photovoltaic system to interconnect various components of the photovoltaic system.
Abstract:
In one embodiment, a direct current bus is disclosed. The direct current bus is a four conductor bus and comprises a positive voltage conductor, a neutral conductor, a negative voltage conductor, and a safety ground. The direct current bus may be implemented in a photovoltaic system to interconnect various components of the photovoltaic system.
Abstract:
In one embodiment, a direct current bus is disclosed. The direct current bus is a four conductor bus and comprises a positive voltage conductor, a neutral conductor, a negative voltage conductor, and a safety ground. The direct current bus may be implemented in a photovoltaic system to interconnect various components of the photovoltaic system.
Abstract:
An electronic torch is disclosed which includes at least one light emitting diode disposed in each one of a plurality of sections of the electronic torch. In one embodiment, each one of the plurality of sections of the electronic torch is independently selectable to activate the at least one light emitting diode disposed in each one of the plurality of sections of the electronic torch. In another embodiment, a mobile device may be connected to the electronic torch and provide instructions to the torch via a wired or wireless connection.
Abstract:
In one embodiment, a direct current bus is disclosed. The direct current bus is a four conductor bus and comprises a positive voltage conductor, a neutral conductor, a negative voltage conductor, and a safety ground. The direct current bus may be implemented in a photovoltaic system to interconnect various components of the photovoltaic system.
Abstract:
An electronic torch is disclosed which includes at least one light emitting diode disposed in each one of a plurality of sections of the electronic torch. In one embodiment, each one of the plurality of sections of the electronic torch is independently selectable to activate the at least one light emitting diode disposed in each one of the plurality of sections of the electronic torch. In another embodiment, a mobile device may be connected to the electronic torch and provide instructions to the torch via a wired or wireless connection.